REPORT ON SÚJB RESULTS ACHIEVED IN THE SURVEILLANCE OF NUCLEAR FACILITY SAFETY AND RADIATION PROTECTION FOR 2005

PART II

CONTENTS

1. Radiation Monitoring Impleme	nted Within the Radiation Monitoring Network	3
1.1. Information on RMS Fund	tion and Organization	
1.2. Monitoring of External Ex	posure	4
1.2.1. Early Warning Netwo	ork	5
1.2.2. TLD Networks		6
1.2.3. Mobile Groups (MS)		6
1.2.4. Air Group (LeS)		7
1.3. Monitoring of Environmen	ntal Components	7
1.3.1. Air	-	7
1.3.1.1. Aerosols		7
1.3.1.2. Gases		
1.3.1.3. Fallouts		
1.3.2. Soils, Stand		9
1.3.3. Drinking and Surface	Waters	9
1.3.4. Water Treatment Slu	lge, Stream-laid Sediments	9
1.4. Monitoring of Food Chain	S	10
1.5. Monitoring of Internal Co	ntamination	11
2. Monitoring of Nuclear Facilitie	S	11
2.1. Monitoring of Radionuclio	le Effluents from NPP	11
2.1.1. Monitoring of Radion	nuclide Effluents from Dukovany NPP	12
2.1.1.1. Independent Monitorin	g	12
2.2. Monitoring of the Vicinity	of NPP	14
2.3. Evaluation of Consequence	es of the Accident at Chernobyl NPP	15
3. Final Evaluation		15
4. List of Abbreviations Used in t	ne Report	17
5. Annex No. 1		19
6. Annex No. 2		

1. RADIATION MONITORING IMPLEMENTED WITHIN THE RADIATION MONITORING NETWORK

This part of the submitted report summarizes the results obtained in radiation monitoring within the Czech Republic for 2005 and acquired by the countrywide Radiation Monitoring Network (RMS), and is thus related to the results obtained in monitoring presented in the Reports on Radiation situation within the Czech Republic from previous years (1995 – 2004). The report also gives brief information on RMS function and organization, and it is used as a basic document for monitoring and assessing the exposure of the public from the sources of ionizing radiation in the environment. For more detailed monitoring results see the Internet pages www.suro.cz.

1.1. Information on RMS Function and Organization

Legal framework for RMS operation is stipulated, together with relevant implementing regulations, in Act No. 18/1997 Coll., on the peaceful utilization of nuclear energy and ionizing radiation (hereinafter "Atomic Act"), as amended. The act outlines the particulars of RMS and appoints the institutions that participate in ensuring the operation. Besides SÚJB, i.e. its Regional Centres and the National Radiation Protection Institute, and the license holders permitted to operate nuclear facilities (ČEZ, a.s., and the Nuclear Research Institute Řež, a. s.), the Ministry of Finance, Ministry of Defence, Ministry of Interior, Ministry of Agriculture and Ministry of Environment are involved. Details as to RMS function and organization are governed by Decree No. 319/2002 Coll. (as amended by Decree No. 27/2006 Coll.). Other requirements for ensuring the monitoring of radiation situation are stipulated in the Government Regulation No. 11/1999 Coll. (for emergency planning zone), as well as the Monitoring Programs that, among others, determine the extent of monitoring the vicinity of nuclear facilities provided by license holders permitted to operate such facility. Particulars of the Monitoring Programs are laid down in Decree No. 307/2002 Coll., as amended, and they are approved by SÚJB. The operation of RMS is in accordance with the Atomic Act regulated by SÚJB.

In 2005, the monitoring of radiation situation within the Czech Republic in the normal mode was performed by the so-called permanent RMS components:

- 1. An Early Warning Network (SVZ) consisting of measuring point system performing continuous measuring of dose equivalent rate within the Czech Republic with current transfer of data to the center. A part of the system is the teledosimetric system situated in the premises and in the vicinity of NPP so that in case of radiation emergency situation or suspicion of such situation the escape to air and to streams is immediately registered and evaluated. The operation of SVZ is ensured by departments of SÚJB, Ministry of Environment (Czech Hydrometeorological Institute) and Ministry of Defence (Armed Forces of the Czech Republic) and ČEZ, a.s. (teledosimetric system).
- 2. A Thermoluminescent Dosimetry Network (TLD), which includes the system for measuring gamma-ray dose and consists of:
 - The so-called territorial TLD network operated by SÚJB department;
 - The so-called local TLD networks, i.e. measuring points in the vicinity of nuclear power plants operated by ČEZ, a.s. and SÚJB department.
- 3. **Measuring points of air contamination,** which include the means for measuring dose equivalent rate, and ensure aerosol and fallout sampling as well as determination of radionuclide activities in such samples; the operation of measuring points is ensured by

departments of SÚJB and Ministry of Environment (Czech Hydrometeorological Institute) and ČEZ, a.s.

- 4. **Measuring points of foodstuff contamination**, which include the means for sampling as well as determination of radionuclide activities in food-chain items. Operation of these measuring points is ensured by departments of SÚJB and Ministry of Agriculture (State Veterinary Institute in Prague, Czech Agricultural and Food Inspection Authority, Central Institute for Supervising and Testing in Agriculture, Forestry and Game Management Research Institute) and ČEZ, a.s.
- 5. **Measuring points of water contamination**, which include the means for sampling as well as determination of radionuclide activities in water, stream-laid sediments and in selected samples of aquatics. Operation of these measuring points is ensured by departments of SÚJB and Ministry of Environment (T. G. Masaryk Water Research Institute and Czech Hydrometeorological Institute) and ČEZ, a.s.
- 6. **Measuring points at the frontier crossings**, which include the means for acquiring data on radionuclide contamination of persons, transport means, goods, objects and materials at the frontier crossings. Operation of these measuring points is ensured by the Ministry of Finance department (Customs General Headquarters).
- 7. **Mobile groups**, which carry out monitoring of doses, dose equivalent rates and radionuclide activities in field, sampling of environmental components, and placement and replacement of dosimeters within the thermoluminescent dosimetry network. Operation of these measuring points is ensured by departments of SÚJB, Ministry of Finance (Customs General Headquarters) and Ministry of Interior (General Directorate of Fire Rescue Brigade of the Czech Republic and Police of the Czech Republic) and ČEZ, a.s.
- 8. An Air Group, which carries out monitoring of large areas (measuring of dose equivalent rates; surface or specific activities of artificial or natural radionuclides) and if required, it is ready to locate lost radiation source. It is ensured by SÚJB department (SÚRO) in cooperation with the Ministry of Defence (Armed Forces of the Czech Republic).
- 9. Laboratory groups, which ensure environmental sampling and carry out spectrometric or radiochemical analyses of environmental samples. Operation of such groups is ensured by SÚJB department (SÚRO and RC) and ČEZ, a.s.
- 10. **Monitoring Network Central Laboratory**, which coordinates measurements of samples taken by the laboratory and mobile groups. The Central Laboratory controls the selected measurements of these samples and evaluates the results with the aim of providing data to determine measures to be taken to reduce or prevent exposure to humans. In addition, the Laboratory coordinates and controls measurement of internal contamination of humans. Operation of this laboratory is ensured by SÚJB department (SÚRO).
- 11. **Meteorological service**, which acquires meteorological data necessary to perform evaluation and forecast of radiation situation development using the models for escaped radionuclides spreading in the air. Operation of this service is ensured by the Ministry of Environment department (Czech Hydrometeorological Institute).

The summary of samples taken within the framework of RMS monitoring from the environment and from the food-chain items, as well as numbers of such samples for 2005 are outlined in Table No. 1.

1.2. Monitoring of External Exposure

Monitoring of external exposure is ensured by SVZ, territorial and local TLD networks, and mobile and air groups.

1.2.1. Early Warning Network

Distribution of SVZ measuring points within the Czech Republic is shown on Figure No. 1. The measuring points are equipped with pairs of sensing elements ensuring continuous measuring of photon dose equivalent rate (mean dose rate per 10 minutes) in the range from 5.10^{-8} to 10^{0} Sv/hour. Acquired values are transferred to the central workplace at regular intervals (from 9 points situated in the measuring points of air contamination at RC SÚJB and SÚRO and from 7 measuring points situated at the workplaces of Fire Rescue Brigade every 10 minutes; from 38 measuring points located in the Czech Hydrometeorological Institute observatory in ordinary radiation situation every hour, in emergency radiation situation every 30 minutes). Furthermore, the Armed Forces of the Czech Republic ensures the measuring (in ordinary radiation twice a day, in emergency radiation situation as required by SÚJB Crisis Staff). Data is evaluated in the central database and in case of excess of reference levels (examination or intervention) the selected group of SÚRO and SÚJB Crisis Staff's personnel is automatically informed.

The operation mode of SVZ is centrally and locally controlled at individual stations by means of the program according to the decision scheme.

The results of all-year-round measuring of mean photon dose equivalent rates performed by sensing elements situated at RC SÚJB in Hradec Králové, Temelín NPP, Dukovany NPP and in Churáňov are shown on Figure Nos. 2a to 2d. The comparison of values shows evident influence of natural background at the measuring points located in different altitudes above sea level. The variations of photon dose equivalent rate (PFDE) during seasons in lower positions are at low figure and allow to determinate the examination levels for transition into the radiation emergency situation mode. Such levels are specific for the locality in question; however, they are season-independent (Figure Nos. 2a to 2c). The fluctuations of natural background in the stations located in higher positions (Figure No. 2d) are significant in the course of the year and the examination levels are determined taking into account meteorological (local) conditions in the season in question.

The values measured within the SVZ network corresponded to expected natural background variations and no excess of intervention levels was recorded in the year 2005. Total results of photon dose equivalent rate (PFDE) measuring within SVZ are available to the public all year round on the Internet page of SÚRO (www.suro.cz).

The values of tissue kerma rate (monthly mean values) measured by the SVZ department operated by the Armed Forces of the Czech Republic (AČR) are presented in Table No. 2.

The values of dose equivalent rate measured at one of the points (measuring point No. 13) of the TDS network operated by Dukovany NPP and the TDS network operated by Temelín NPP are illustrated on Figure No. 2e (Dukovany NPP TDS 2005 – measuring point No. 13) and Figure No. 2f (Temelín NPP TDS 2005 – measuring point No. 13).

In the course of the year 2005, there were no changes in the radiation situation within the state that could lead to the excess of intervention levels on the detectors of SVZ departments; if there was any excess of examination level, then it was due to rain precipitations in the relevant place. The responses of SVZ detector corresponding to calibration measurements performed, responses distorted by other factors, or influences – e.g. detector malfunctions, but not due to change in the radiation situation in the relevant place, were software-eliminated into time trends shown on Figure Nos. 2a to 2f.

1.2.2. TLD Networks

The area monitoring of the dose equivalent from external exposure is provided by TLD networks. The measuring is implemented in the form of integral measuring for 3 months; the interval is reduced, if required. The TLD network is comprised of 205 measuring points within the Czech Republic (territorial network); 9 measuring points thereof are located in the vicinity of Temelín NPP and 12 measuring points are located in the vicinity of Dukovany NPP (known as local networks). The operation of TLD network is ensured by SÚRO and RC SÚJB.

The dosimeters within TLD network are placed 1 meter above ground level (within the local network in the vicinity of Dukovany NPP they are placed 3 meters above ground level), in most cases (two thirds) in an open area. Part of the dosimeters is placed in buildings so that in case of radiation emergency the efficiency of population sheltering could be assessed. Distribution of the measuring points of TLD networks within the country is shown on map on Figure No. 3 (letter b indicates the points in buildings).

By means of TLD network, the value of photon dose equivalent rate or mean photon dose equivalent rate is determined thus providing sufficient basis for an estimate for effective dose.

The results of measurements acquired within the territorial TLD network for 2005 are presented in Table No. 3, which includes mean quarterly photon dose equivalent rate measured at individual measuring points.

No excess of examination levels was recorded in the year 2005. The several-year measurements within the TLD territorial network confirm its capability to record possible significant deviations from the normal state.

The results of measurements of external exposure acquired by SVZ and territorial TLD network in the year 2005 correspond to one another, as in previous years.

The results of measurements acquired by local networks in the vicinity of Dukovany and Temelín NPPs are indicated in Table Nos. 4 to 7.

The results of measurements in the local TLD networks operated by LRKO NPP are presented in Table Nos. 4 and 5 in the form of mean quarterly photon dose equivalent rate measured at individual measuring points.

1.2.3. Mobile Groups (MS)

Monitoring of radiation situation on determined routes is ensured by MS within the framework of TLD distribution and collection, when monitoring is performed on standard routes, and within the framework of emergency exercises, when monitoring is performed in accordance with the plan of exercise in question. There were two emergency exercises held in the year 2005, during which the operation of MS was practiced among other things and some results thereof are presented. The INEX-3 exercise (for details see Chapter No. 7.2.2) was involved, when each and every group was called to monitor radiation situation within the emergency preparedness zone (ZHP) in the vicinity of Dukovany NPP by means of measurement of dose equivalent rates on the run of automobile car (Figure No. 4). The exercise performed measuring of doses in case of "finding" or "capture" of ionizing radiation source (ZIZ), identified this source and suggested the measures to be taken for its security.

Six mobile groups of SÚJB department participated in the "PODZIM 2005" exercise on September 22 and 23, 2005, which was aimed at practicing the operation of single components of the Integrated Rescue System and RMS in the case of terrorist bomb attack with the possibility of using the CBRN – substances.

In the course of the year, the RC and SÚRO mobile groups performed drills for travelling measuring of dose equivalent rates at quarterly interval in collection and distribution of dosimeters within TLD networks. An example of results from fourth quarter of 2005 is illustrated on Figure No. 5.

1.2.4. Air Group (LeS)

Monitoring of radiation situation in the large area is ensured by the air group in the form of single flights over determined location, in particular within the framework of emergency exercises. In the course of "Havárie 2005" exercise, the air group (SÚRO in cooperation with the Armed Forces of the Czech Republic) carried out a training survey of surface contamination with gamma radionuclides in the year 2005. The area spreading between Náměští nad Oslavou and Moravský Krumlov was determined for "measuring" of surface contamination. Results of the measurement are shown on Figure No. 6. Individual measuring points are shown on the map in the form of dots, while their colour corresponds to interval, in which the measured dose equivalent rate occurs in the point in question.

1.3. Monitoring of Environmental Components

The Monitoring Network Central Laboratory, MMKO, MMKV and laboratory groups participate in monitoring of environmental components.

The following environmental components are monitored: air (aerosols, gases, fallouts), soils and stands, drinking and surface waters, water treatment sludge and stream-laid sediments.

1.3.1. Air

1.3.1.1. Aerosols

Aerosol monitoring is performed at selected MMKO. The map illustrating location of the individual facilities for sampling of atmospheric aerosol together with designation of the flow of used bleeding equipment is shown on Figure No. 7.

The time series of activity concentration of ¹³⁷Cs in aerosols taken from the air at MMKO in the year 2005, which was operated by RC SÚJB, SÚRO in Prague and Ostrava, and Czech Hydrometeorological Institute (Cheb, Holešov), are shown on Figure Nos. 8a to 8j. The time course of monthly mean values of activity concentration in aerosols at MMKO SÚRO in Prague after the accident in Chernobyl is shown on Figure No. 9.

In 2005, there were no significant deviations in the artificial radionuclide content in the air from long-term mean values. Detected tracks of ¹³⁷Cs came from the higher levels of the atmosphere and from the resuspension of the original fallout on the ground surface, and they amounted to tenths to ones of μ Bq/m³. A part of the ¹³⁷Cs activity in the air is from the global fallout from nuclear weapon tests in the atmosphere and another part from the

Chernobyl NPP accident. Figure No. 9 shows the long-term, currently very slow, decrease of the activity concentration of ¹³⁷Cs as well as seasonal variation of the content of ⁷Be.

Besides the ¹³⁷Cs the ⁷Be, which is of cosmogenic origin, and the ²¹⁰Pb, which is the product of the ²²²Rn transformation, are evaluated in aerosols on a weekly basis. Monitoring of specific activities of such radionuclides is used for verification of result accuracy of the laboratory in question.

Table No. 8 shows the yearly mean values and tolerance intervals for relevant radionuclide activity concentration in the aerosols and current information is continuously presented on SÚRO homepage (<u>http://www.suro.cz</u>).

In aerosols, taken at MMKO SÚRO in Prague and in Hradec Králové, the activity concentration of ⁹⁰Sr was also determined in joint quarterly samples (Table No. 9). The activity of ²³⁸Pu and ^{239,240}Pu was determined in joint quarterly samples from aerosols taken at MMKO SÚRO in Prague (Table No. 10).

1.3.1.2. Gases

Monitoring of ⁸⁵Kr has been included in the system of monitoring of the radionuclide content in the air performed by RMS in 1996, as part of the intention to include monitoring of all artificial radionuclides detectable in the environment. The activity of ⁸⁵Kr in the air comes from plants for nuclear fuel reprocessing, nuclear weapon tests in the atmosphere and, in small amounts, also from the effluents from nuclear power plants. It is one of the so-called global radionuclides, which contribute to worldwide uniform exposure of the population.

Sampling for determination of this nuclide is performed at MMKO SÚRO in Prague, and measuring is performed at the Radiation dosimetry department of the Nuclear Physics Institute of the Academy of Science of the Czech Republic. The time course of the activity concentration of ⁸⁵Kr in the air measure from 1986 up to the present is shown on Figure No. 10a. No significant changes in mean concentration activity were recorded over a period of last years.

In 2001, monitoring of ¹⁴C in the atmosphere started. It involves the measurement of activity concentration of ¹⁴C in the form of CO₂. Other possible forms of carbon in the air are not monitored since their concentrations are lower compared to CO₂ concentration (concentration of CH₄ and CO amounts usually to fractions of CO₂ concentration, and the values of concentration of other hydrocarbons are lower by several levels of magnitude). The activity of ¹⁴C in the form of methane follows usually the time course of its activity in the form of CO₂. The carbon in the form of CO generally comes from fossil fuel combustion and the activity of ¹⁴C is thus very low.

Current activity of ¹⁴C in the air is particularly defined by its natural production in the higher atmospheric layers due to the action of cosmic radiation. The ¹⁴C is also released in small amount to the air from nuclear facilities. The activity of ¹⁴C in the air was increased due to nuclear weapon tests in the atmosphere. Such increase amounted to levels up to 80% above its natural occurrence in the middle of 1960s. Since then, the activity of ¹⁴C lowers primarily under the action of deposition of the carbon in the ocean sediments and currently it does not exceed the natural value by more than 10%. Results of the measurement of ¹⁴C in the form of CO₂ are shown on Figure No. 10b.

1.3.1.3. Fallouts

Measured values of fallouts also corroborated the fact that there were no significant deviations in the artificial radionuclide content in the air during the year 2005 (in the majority of measuring points, the values are below MVA). Likewise aerosols, including ¹³⁷Cs the ⁷Be and ²¹⁰Pb, are evaluated in fallouts, monitoring of which is used for verification of correctness of results from the laboratory in question.

The monthly time series of the surface activity of ¹³⁷Cs in fallouts from the individual sampling points is shown on Figure Nos. 11a to 11h. The time series of the surface activity of ¹³⁷Cs, ⁷Be and ²¹⁰Pb determined in fallouts collected on the water surface at MMKO SÚRO in Prague, again from the accident in Chernobyl, is shown on Figure No. 12a. The yearly mean values and tolerance intervals for the surface activity in the fallouts are indicated in Table No. 8. The activity concentration of ³H in precipitations collected also at MMKO SÚRO in Prague is illustrated on Figure No. 12b.

1.3.2. Soils, Stand

No samples of soils and stands were taken in 2005 (this case does not involve monitoring of time series, but maintenance of corresponding methodical level). Four measurements were executed in the participation of all laboratory groups (LS), which perform measurement and evaluation of soil samples, in order to compare the methods for determination of artificial and natural radionuclide activities.

1.3.3. Drinking and Surface Waters

The monitoring point of water contamination monitored the activity of ¹³⁷Cs, ⁹⁰Sr and ³H in the samples of drinking and surface water. Large sources of drinking water (Table No. 11) and selected surface waters (Table No. 12) were monitored in particular. The National Radiation Protection Institute in Prague, T. G. Masaryk Water Research Institute in Prague and Czech Hydrometeorological Institute participated in monitoring. The activity concentrations of ³H in the samples from places not influenced by effluents from the nuclear facilities are low and about the same. The activity concentrations of ¹³⁷Cs and ⁹⁰Sr are very low at all monitored places.

The time course of the activity concentration of 3 H in selected streams is shown on Figure Nos. 13a to 13c. The 3 H content measured in the Vltava river in Hluboká, in the Jihlava river in Vladislav and in the Odra river is not influenced by the effluent from the nuclear power plant.

Within the framework of water quality monitoring, the Czech Hydrometeorological Institute ensures, in addition to other water quality parameters, determination of total activity concentration alpha, total activity concentration beta and total activity concentration beta after deducting the contribution of ⁴⁰K, concentration activity of ²²⁶Ra, uranium concentration and tritium activity concentration in the samples from selected locations. Results of such determinations are published on the Internet page of the Czech Hydrometeorological Institute – <u>www.chmu.cz</u>.

1.3.4. Water Treatment Sludge, Stream-laid Sediments

Within the framework of monitoring point of water contamination activity ensured by the T. G. Masaryk Water Research Institute, the activity of ¹³⁷Cs (Table No. 13) was monitored in the stream-laid sediment and in the water treatment sludge in the vicinity of

large sources of drinking water. The activity mass of ¹³⁷Cs in the water treatment sludge is low and about the same at all sampling points.

1.4. Monitoring of Food Chains

The Monitoring Network Central Laboratory, laboratory groups and monitoring point of foodstuff contamination ensured by the organizations of the Ministry of Agriculture and Ministry of Environment participate in monitoring of food chains.

The following samples are monitored: milk, meat, fish, wild-animal meat, potatoes, cereals, vegetable, fruit, honey, forest fruits, mushrooms and feedstuffs that are taken from both the distributors and from producers.

In order to maintain the time series from previous years, when monitoring was primarily ensured by the SÚJB department, this report includes separately, in addition to common results, the results from SÚJB department and from subjects outside the SÚJB department. In view of the type of data files, the range of detected values is provided with some commodities instead of mean value and tolerance interval. This involves in particular the cases when the activities were largely below the value of minimum significant activity (MVA) or when the presupposition on their monomodal lognormal distribution was not sufficiently fulfilled.

The minimum significant activities (MVA) for ¹³⁷Cs were below 0.1Bq/l in marketmilk and below 0.1 Bq/kg in powdered milk when using concentration radiochemical methods. The activity concentrations in milk are the result of measurements of market-milk and powdered milk (taking into account concentration factor), since according to the monitoring plan the individual laboratories may use the plants producing powdered milk, according to local facilities, for sampling purposes.

The values of minimum significant activity (MVA) were generally lower than 0.5 Bq/kg in the case of slaughter meat as well as in the case of vegetable and fruit. The annual mean values and tolerance intervals for activity mass or concentration of ¹³⁷Cs in milk, meat, fruit, vegetable, honey, forest fruits and mushrooms for 2005 are indicated in Table Nos. 14a to 14c. The results of determination within the SÚJB department are shown in Table No. 14a, the results within the Ministry of Agriculture and Ministry of Environment departments are shown in Table No. 14b and the results from all subjects participating in this monitoring are included in Table No. 14c. The results of radiochemical determination of ⁹⁰Sr in the market-milk performed by SÚRO laboratories in Prague, Ostrava and Hradec Králové are presented in Table No. 15.

The values of activity mass of ¹³⁷Cs in forest fruits, mushrooms and wild animal meat against other foodstuffs are relatively higher and their decrease is very slow. Therefore, in spite of low consumption, the contribution to the total committed effective dose from ¹³⁷Cs ingestion is significant for an average citizen.

The results of activity mass determination of ¹³⁷Cs in cereals and in potatoes are indicated in Table Nos. 16a and 16b (Table No. 16a presents the results of SÚJB department, and Table No. 16b presents the results of the Ministry of Agriculture resort). The results of ⁹⁰Sr determination in the samples of wheat and barley performed in SÚRO in Prague are included in Table No. 17.

Time courses of annual mean activity mass or concentration of ¹³⁷Cs in milk, beef and pork are shown on Figure No. 14 in the way they were measured by the Radiation Monitoring

Network from 1986 to 2005 (only results from the SÚJB department are included to maintain continuation in time series).

Monitoring results of selected feedstuffs are included in Table No. 18.

1.5. Monitoring of Internal Contamination

As in previous years, the monitoring of 137 Cs internal contamination in persons' bodies continued on the SÚRO whole-body counter in Prague. The group of 29 persons (12 men, 17 women) participated in the monitoring in the year 2005, mainly Prague inhabitants in the age between 24 and 66 years. With respect to the very low content of 137 Cs in the population, the whole-body measurement is performed once a year only, while a long measurement period is used to reach the lowest limit of detectability. Based on these measurements, the mean activity of 137 Cs in the body of one person was estimated at 26 Bq in the year 2005.

The countrywide survey was performed as in previous years to ascertain the internal contamination of ¹³⁷Cs through the measurement of the ¹³⁷Cs activity excreted in urine in 24 hours. The samples were taken in May to June 2005 from 32 women and 27 men in total, who roughly represent the Czech population with their food habits. The mean value of the ¹³⁷Cs activity, excreted in urine in 24 hours, was 0.22 Bq and the recalculated mean content (retention) of ¹³⁷Cs activity in the body corresponding to it was 36 Bq.

The correspondence of mean activities in the body is very good considering the fact that two different groups of examined persons (in terms range as well as location) and different methods for this activity determination are concerned. Committed effective dose assessment based on results of the countrywide survey equals to 1.3 μ Sv for ¹³⁷Cs. Time retention course of ¹³⁷Cs with the Czech population acquired by measurement of the reference group and by measurement of the content of ¹³⁷Cs in urine since 1986 is illustrated on Figure No. 15.

The content of ¹³⁷Cs is monitored with the group of 12 persons (3 women, 9 men) from the North Moravia on a long-term basis, who consume, in an increased quantity, wild animal meat and forest fruits, in particular mushrooms. The mean value of the ¹³⁷Cs activity, excreted in urine in 24 hours, was 14.7 Bq with this group, which corresponds to the retention 2410 Bq and leads to an estimate of committed effective dose 95 μ Sv.

2. MONITORING OF NUCLEAR FACILITIES

2.1. Monitoring of Radionuclide Effluents from NPP

Radionuclide effluents from Dukovany NPP and Temelín NPP to the air and streams are limited by the so-called authorized limits laid down by SÚJB in decisions on allowance of the introduction of radionuclides into the environment. The authorized limits are expressed by summing up the annual effective dose from external exposure and the committed effective dose from internal exposure for individuals from critical group of population belonging to the exposure way in question. The adherence to the limits is proven by means of computer programs approved by SÚJB, i.e. for current radionuclide effluent to the air or to the stream in real meteorological or hydrological ratios in the year in question.

The authorized limit for effluents to the air is determined at 40 μSv at both nuclear power plants.

The authorized limit for effluents to the stream is determined at 6 μ Sv for Dukovany NPP and 3 μ Sv for Temelín NPP.

The limiting conditions for the operation of the nuclear reactor at Nuclear Research Institute in Řež are determined by the following maximum annual balance effluents of radionuclides to the vicinity of the Nuclear Research Institute:

For effluents to the air:

Radionuclide group	Reference radionuclide	Limit (Bq/r)
Tritium	³ H	1.10^{14}
Noble gases	^{41}A	1.10^{15}
Radioactive iodine	¹³¹ I	2.10^{10}
Beta aerosols	137 Cs	1.10^{10}
Alfa aerosols	²³⁹ Pu	7.10^{6}
Carbon	^{14}C	2.10^{12}

For effluents to the stream:

Radionuclide group	Reference radionuclide	Limit (Bq/r)
Tritium	³ H	2.10^{12}
Beta radiation sources	¹³⁷ Cs	$2,2.10^9$
Alfa radiation sources with	²³⁹ Pu	4.10^{6}
half-life period >5 years		

2.1.1. Monitoring of Radionuclide Effluents from Dukovany NPP

2.1.1.1. Independent Monitoring

Within the independent monitoring of effluents from nuclear facilities to the air, SÚRO staff carried out air-mass sampling from the VK - 1 and VK - 2 ventilation stacks in 2005 at Dukovany NPP in order to determine the activity concentration of noble gases. During the sampling, the mass of air was sampled to pressure vessels and measured by semiconductor gamma spectrometry at SÚRO laboratories. After longer interval the activity of ⁸⁵Kr was determined in taken samples in like manner used for its activity concentration in the air. Results of the measurement are indicated in Table No. 19. The values from snap sampling are not contrary to measurements with monitors placed in the VK - 1 and VK - 2 ventilation stacks. The content of ¹⁴C in the form of CO₂ and in the combustible forms has been monitored since 2002 in the snap air-mass sampling. The values of activity concentration of ¹⁴C are indicated in Table No. 20. The activities of ⁹⁰Sr and transuranium radionuclides determined by SÚRO in the aerosol effluents of Dukovany NPP are indicated in Table No. 21.

The monthly values of tritium activity in the liquid effluents from Dukovany NPP measured by SÚJB and compared with the results of measuring performed by the Laboratory for Monitoring of Environment Radiation at Dukovany NPP are shown on Figure No. 16. The weekly values of tritium activity concentration in the liquid effluents in the discharge channel measured by SÚJB and measured by the Laboratory for Monitoring of Environment Radiation at Dukovany NPP are compared on Figure No. 17.

2.1.1.2. Monitoring of Effluents Ensured by Dukovany NPP

According to Dukovany NPP report "D57 - Radiation situation in the vicinity of Dukovany NPP for 2005", total radionuclide effluents from Dukovany NPP to the air amounted to 0.42% of annual limit, when the ¹⁴C effluents represent the most part, which amounted to 0.39% of annual limit, and noble gases less than 0.03% of annual limit for effluents. Results of the measurement are indicated in Table No. 22.

Data of Dukovany NPP effluents to streams is indicated in Table No. 23. Total effluent to streams amounted to 30.70% of annual limit.

2.1.2. Monitoring of Radionuclide Effluents from Temelín NPP

2.1.2.1. Independent Monitoring

Within the "independent" monitoring there were three air-mass samplings from the internal HVB-1 ventilation stack, two air-mass samplings from the internal HVB-2 ventilation stack and one sampling from the BAPP ventilation stack performed in 2005 in order to determine the activity concentration of noble gases in the same manner as in case of Dukovany NPP. Results of the measurement are indicated in Table No. 24. The values from snap sampling are not contrary to snap measuring performed by NPP. The content of ¹⁴C in the form of CO₂ and in the combustible forms has been monitored since 2002 in the snap airmass sampling. The values of activity concentration of ¹⁴C are indicated in Table No. 25. The activities of ⁹⁰Sr and transuranium radionuclides determined by SÚRO are indicated in Table No. 26.

The monthly values of tritium activity in the liquid effluents from Temelín NPP measured by SÚJB and compared with the results of measuring performed by the Laboratory for Monitoring of Environment Radiation at Temelín NPP are shown on Figure No. 18. The weekly values of tritium activity concentration in the liquid effluents in the discharge channel measured by SÚJB and measured by the Laboratory for Monitoring of Environment Radiation at Temelín NPP are compared on Figure No. 19.

2.1.2.2. Monitoring of Effluents Ensured by Temelín NPP

According to Temelín NPP report "D 02 – Results of effluent monitoring and radiation situation in the vicinity of Temelín NPP for 2005", total radionuclide effluents from Temelín NPP to the air amounted to less than 2.02% of annual limit expressed as maximum effective dose for individuals from the critical group of population. Results of the measurement are indicated in Table No. 27.

Balance measuring of radionuclide content in the liquid effluents demonstrates that less than 42.6% of annual authorized limit for liquid effluents was discharged in 2005. Data of Temelín NPP effluents to streams is indicated in Table No. 28.

2.1.3. Monitoring of Radionuclide Effluents from the Nuclear Research Institute in Řež

2.1.3.1. Independent Monitoring

In 2005, SÚRO performed one-shot evaluation of the activity concentration of radioactive noble gases in effluents from the ventilation stack at the Nuclear Research

Institute in Řež (LVR-15 reactor gaseous effluents fall thereto) in the same manner as at the nuclear power plant. Results of the determination are indicated in Table No. 29. The ⁴¹Ar activity is dominant. Increase of concentration of this radionuclide in 2005, as compared to the preceding three years (Figure No. 20a), does not depart from long-term trends and represents still about 1/10 of authorized limits. The estimate of annual effluent of radionuclide noble gases carried out on the basis of SÚRO measurements is in good conformity with the values provided by the Nuclear Research Institute in Řež.

2.1.3.2. Monitoring Ensured by the Nuclear Research Institute in Řež

According to data provided by the Nuclear Research Institute in Řež, the ⁴¹Ar effluent forms the most part of the effluents to the air, which amounted to 11.2% of annual limit in 2005. The annual activity values of noble gases in effluents to the air are shown on Figure No. 20a and the values of I-131 activity are shown on Figure No. 20b.

Radionuclide effluents to streams amounted to 0.28% of annual authorized limit in 2005. Summary of annual activity values of radionuclides discharged to streams (purifying station sampling) is shown on Figure No. 20c.

It is apparent from the summaries shown on Figure Nos. 20a to 20c that the values of radionuclide activities in gaseous and liquid effluents from the Nuclear Research Institute in Řež reach only a fraction of authorized limits for effluents.

2.2. Monitoring of the Vicinity of NPP

2.2.1. Dose Equivalent from External Exposure (Local TLD Networks)

Results of independent monitoring in the local TLD networks operated by SÚJB department are indicated in Table Nos. 6 and 7.

None of the networks registered any excess of examination levels in 2005. Lower values of photon dose equivalent rate (on an average, approximately by 30%) measured by the local LRKO network in the vicinity of Dukovany NPP, as well as in the preceding years, are related to the fact that the measuring performed at the same places is not involved and the difference in height of TL dosimeter placement becomes clearly evident. The LRKO dosimeters are installed 1m above the ground, while dosimeters of the SÚJB network are installed 3m above the ground.

2.2.2. Monitoring of Environmental Components and Food Chains in the Vicinity of NPP

Monitoring of environmental components and selected elements of the food chain in the vicinity of Dukovany and Temelín NPPs is carried out by the relevant RC SÚJB and by operators of nuclear power plants in accordance with their monitoring programs. Results of monitoring of the vicinity, possibly premises of NPP carried out by Dukovany NPP operator are shown on Figure No. 21a and in Table Nos. 30a and 31, and by Temelín NPP operator on Figure Nos. 21b and 21c and in Table Nos. 30b and 31. The time series of monitoring results of aerosols in the air in the premises and vicinity of both NPPs (Figure Nos. 21a to 21c) demonstrates that all values measured in 2005 were below the minimum significant activity (MVA). The tables show separately the activity concentration of ³H in surface waters affected

by effluents to streams from NPP: Table No. 30a includes samplings from the reservoir in Dalešice and from the sampling points located thereunder, Table No. 30b - from sampling point Vltava – Hladná, Vltava – Solenice and Vltava – Kořensko (check of possible back overflow). Both tables contain also the results from streams and wells, which could be affected by infiltrations and effluents of ³H from NPP.

Figure No. 22 shows the results of independent monthly monitoring of tritium activity concentration performed by SÚJB in the profiles Mohelno of the Jihlava river, or Újezd of the Vltava river affected by tritium effluent from Dukovany NPP, or Temelín NPP.

Results of the independent monitoring of ¹³⁷Cs surface activity performed by SÚJB in fallouts in the vicinity of NPP are illustrated for two locations in the vicinity of Dukovany NPP on Figure No. 23 and for six locations in the vicinity of Temelín NPP on Figure No. 24.

Results of the independent monitoring ensured by the SÚJB resort are also included in Table Nos. 32a and 32b. The values of radionuclide activity mass in elements of the food chains range from hundredths to tenths of Bq/kg, as well as values detected in territorial monitoring.

Monitoring of the vicinity of Dukovany NPP and Temelín NPP proved that there are no differences between the radionuclide content in the individual environmental components and in food chains taken from the vicinity of nuclear power plants and from other parts of the country.

Results of the monitoring performed by SÚJB department, or other departments participating in RMS activity, are in good agreement with the results of monitoring ensured by NPP operators.

2.3. Evaluation of Consequences of the Accident at Chernobyl NPP

A part of the assessment of radiation situation within the Czech Republic in 2005 was the assessment of long-term consequences of the accident at Chernobyl NPP that primarily consists in monitoring of ¹³⁷Cs content in the air (aerosols and fallouts), in food chains and in human body with selected groups of population.

In 2005, the content of ¹³⁷Cs was, as in the preceding several years, with many samples under the detectable limit. Therefore, mean values and their tolerance intervals were assessed on the assumption that distribution of values in data files is a lognormal distribution. On occurrence of values under the detectable limit special statistical methods were employed making use of maximum credible estimates for censored data. The values of minimum significant activities (MVA) fluctuate also within the framework of time series of measuring performed by one laboratory. The influence of measurement length, used detector efficiency and sample size (e.g. sucked-air amount on aerosol sampling, bleeding equipment area for fallout collection, original volume of water, milk, etc., used for determination of activity of the radionuclide in question) is involved.

3. FINAL EVALUATION

Based on monitoring performed within the framework of RMS as well as monitoring performed in the vicinity of nuclear facilities, it may be stated that there was no escape of radionuclides to the environment registered in 2005 within the territory of the Czech Republic

and that no excess of determined intervention levels was recorded at any of the measuring points that could result in the necessity of any population or environment protection measures. The variations in dose rate measuring are caused by fluctuations of natural background.

There is still measurable, very low activity of ¹³⁷Cs contained in the environmental components, food chains and in people that got into the environment after the Chernobyl accident. Its specific activity has remained almost the same, i.e. same as in longer interval from nuclear weapon tests in the atmosphere.

The effluents from Dukovany NPP remain very low. The radionuclide content in effluents to the air was about 0.42% of authorized annual limit; the content of tritium and activation, corrosion and fission products in effluents to streams equaled to 30.70% of authorized annual limit. However, the latter arises from nuclear power plant technology and it does not change significantly over years.

Total effluent of the individual radionuclides to the air from Temelín NPP for 2005 equaled to 2.02% of authorized annual limit; activities of tritium and activation, corrosion and fission products discharged from control tanks to streams were on the level of 42.60% of authorized annual limit.

The ⁴¹Ar effluent forms the most part of the individual radionuclides to the air from the Nuclear Research Institute in Řež for 2005 - this effluent amounted to 11.2 % of annual limit, and effluent to streams amounted to 0.28% of annual limit.

There were no differences detected between the content of radionuclides in the individual environmental components from the vicinity of Dukovany and Temelín nuclear power plants compared to other parts of the country.

4. LIST OF ABBREVIATIONS USED IN THE REPORT

ARMS	Army Radiation Monitoring Network
AČR	Armed Forces of the Czech Republic
BAPP	Auxiliary Service Building for Primary Systems of Nuclear Power
	Plant
ČHMÚ	Czech Hydrometeorological Institute
EDU	ČEZ, a. s Dukovany Nuclear Power Plant (Dukovany NPP)
ETE	ČEZ, a. s Temelín Nuclear Power Plant (Temelín NPP)
GŘC	Customs General Headquarters
GŘ HZS ČR	General Directorate of Fire Rescue Brigade of the Czech Republic
HVB	(Main Production) Unit
HZS	Fire Rescue Brigade
IS RMS	Information System of Radiation Monitoring Network
JE	Nuclear Power Plant
JZ	Nuclear Facility
KŠ	Crisis Staff
LRKO	Laboratory for Monitoring of Environment Radiation
LeS	Air Group
LS	Laboratory Group
MDA	Minimum Detectable Activity
MF	Ministry of Finance of the Czech Republic
MM	Monitoring Point
MMKO	Monitoring Point of Air Contamination
MMKP	Monitoring Point of Foodstuff Contamination
MMKV	Monitoring Point of Water Contamination
MO	Ministry of Defence
MS	Mobile Group
MV	Ministry of Interior of the Czech Republic
MVA	Minimum Significant Activity
MZe	Ministry of Agriculture of the Czech Republic
MŽP	Ministry of Environment of the Czech Republic
ODZ	Radiation Dosimetry Department
PČR	Police of the Czech Republic
PDE resp. PFDE	Photon Dose Equivalent Rate
RC SÚJB	Regional Centre of the State Office for Nuclear Safety
RMS	Radiation Monitoring Network
SRKO	Environmental Radiation Control Station
SÚJCHBO	National Institute for Nuclear, Chemical and Biological Protection
SUJB	State Office for Nuclear Safety
SURO	National Radiation Protection Institute
SVU	State Veterinary Institute
SVZ	Early Warning System
SZPI	Agricultural and Food Inspection Authority
TL	Thermoluminescent
TLD	Thermoluminescent Dosimetry
UJF AV CR	Nuclear Physics Institute of the Academy of Science of the Czech
	Republic
UJV	Nuclear Research Institute Rež, a.s.

ÚKZÚZ	Central Institute for Supervising and Testing in Agriculture
VDMI	SÚJB Internal Documentation – teaching instruction
VK	Ventilation stack
VÚJE	Nuclear Power Plant Research Institute, a.s.
VÚLHM	Forestry and Game Management Research Institute
VÚV T.G.M.	T. G. Masaryk Water Research Institute
ZIZ	Ionizing Radiation Source

5. ANNEX NO. 1

6. ANNEX NO. 2

ANNEX NO. 1

- Table No. 1 Summary of the number of samples analysed in the year 2005 within RMS
- Table No. 2Monthly mean values of the tissue kerma rate in the year 2005 (Measuring by
the ARMS)
- Table No. 3 Quarterly mean values of the photon dose equivalent rate measured by TLD territorial network in the Czech Republic in the year 2005 (measuring by the SÚRO)
- Table No. 4Quarterly mean values of the photon dose equivalent rate [nSv/h] measured by
TLD local network in the vicinity of Dukovany NPP in the year 2005 (taken
from the Dukovany NPP Report)
- Table No. 5Quarterly mean values of the photon dose equivalent rate [nSv/h] measured by
TLD local network in the vicinity of Temelín NPP in the year 2005 (taken from
the Temelín NPP Report)
- Table No. 6 Quarterly mean values of the photon dose equivalent rate measured by TLD local network in the vicinity of Dukovany NPP in the year 2005 (measuring by the SÚRO)
- Table No. 7Quarterly mean values of the photon dose equivalent rate measured by TLD
local network in the vicinity of Temelín NPP in the year 2005 (measuring by
the SÚRO)
- Table No. 8 Mean activity concentration of ¹³⁷Cs, ⁷Be and ²¹⁰Pb [Bq/m³] in the aerosols in the air and mean surface activity of ¹³⁷Cs, ⁷Be and ²¹⁰Pb [Bq/m²] in fallouts in the year 2005 (sampling and measuring by the RC SÚJB and SÚRO)
- Table No. 9 Activity concentration [Bq/m³] of ⁹⁰Sr in the air aerosol in the year 2005 (sampling and measuring by the SÚRO)
- Table No. 10 Activity concentration [Bq/m³] of ²³⁸Pu and ^{239,240}Pu in the air aerosol in the year 2005 (sampling and measuring by the SÚRO)
- Table No. 11 Activity concentration [Bq/m³] of ³H, ⁹⁰Sr and ¹³⁷Cs in selected drinking sources in the year 2005 (sampling and measuring by the SÚRO in Prague and VÚV TGM in Prague)
- Table No. 12 Activity concentration [Bq/m³] of ³H, ⁹⁰Sr and ¹³⁷Cs in surface water in the year 2005 (sampling and measuring by the VÚV TGM in Prague)
 Table No. 13 Activity mass values [Bq/kg] of ¹³⁷Cs in the water treatment sludge and stream-
- Table No. 13 Activity mass values [Bq/kg] of ¹³ Cs in the water treatment sludge and streamlaid sediments in the year 2005 (sampling and measuring by the VÚV TGM)
- Table No. 14a Activity mass [Bq/kg] and concentration [Bq/m³] of ¹³⁷Cs in selected foodstuffs in the year 2005 (sampling and measuring by the RC SÚJB and SÚRO)
- Table No. 14b Activity mass [Bq/kg] of ¹³⁷Cs in selected foodstuffs in the year 2005 (sampling by the SVÚ, SZPI and VÚLHM, measuring by the SVÚ)
- Table No. 14c Activity mass [Bq/kg] and concentration [Bq/m³] of ¹³⁷Cs in selected foodstuffs in the year 2005 (sampling by the RC SÚJB, SÚRO, SVÚ, SZPI and VÚLHM, measuring by the RC SÚJB, SÚRO and SVÚ)
- Table No. 15 Activity concentration [Bq/m³] of ⁹⁰Sr in milk in the year 2005 (sampling and measuring by the SÚRO in Hradec Králové, Ostrava and Prague)
- Table No. 16a Activity mass [Bq/kg] of ¹³⁷Cs in cereals and in potatoes in the year 2005 (sampling and measuring by the RC SÚJB and SÚRO)
- Table No. 16b Activity mass [Bq/kg] of ¹³⁷Cs in cereals and in potatoes in the year 2005 (sampling by the SZPI, measuring by the SVÚ)
- Table No. 17 Activity mass [Bq/kg] of ⁹⁰Sr in cereals in the year 2005 (sampling and measuring by the SÚRO in Prague)

- Table No. 18 Activity mass [Bq/kg] and concentration [Bq/m³] of ¹³⁷Cs in selected feedstuffs in the year 2005 (sampling by the ÚKZÚZ, measuring by the SVÚ)
- Table No. 19 Activity concentration [Bq/m³] of noble gases from the samples taken from Dukovany NPP ventilation stacks (sampling and measuring by the SÚRO in Prague)
- Table No. 20 Activity concentrations [Bq/m³] of ¹⁴C in Dukovany NPP ventilation stacks (sampling by the SÚRO in Prague, measuring by the ODZ ÚJF AV ČR)
- Table No. 21 Activity of ⁵⁰Sr and transuranium elements discharged to the atmosphere from Dukovany NPP in the year 2005 (sampling by the LRKO at Dukovany NPP, measuring by the SÚRO in Prague)
- Table No. 22Overview of activities of individual radionuclides discharged to the air from
Dukovany NPP in the year 2005 (taken from the Dukovany NPP Report)
- Table No. 23Overview of radioactive substances discharged to the streams from Dukovany
NPP in the year 2005 (taken from the Dukovany NPP Report)
- Table No. 24 Activity concentrations [Bq/m³] of noble gases from the samples taken from Temelín NPP internal ventilation stacks (sampling by the ČEZ, a.s. – Temelín NPP, measuring by the SÚRO in Prague)
- Table No. 25 Activity concentrations [Bq/m³] of ¹⁴C in Temelín NPP ventilation stacks (sampling by the ČEZ, a.s. Temelín NPP, measuring by the ODZ ÚJF AV ČR)
- Table No. 26 Activity of ⁹⁰Sr and transuranium elements discharged to the atmosphere from Temelín NPP in the year 2005 (sampling by the LRKO at Temelín NPP, measuring by the SÚRO in Prague)
- Table No. 27Overview of activities of individual radionuclides discharged to the air from
Temelín NPP in the year 2005 (taken from the Temelín NPP Report)
- Table No. 28Overview of activities of radioactive substances discharged to the hydrosphere
from Temelín NPP in the year 2005 (taken from the Temelín NPP Report)
- Table No. 29 Activity concentrations of noble gases and ¹⁴C from the samples taken from ÚJV Řež nuclear reactor ventilation stack in the year 2005 (sampling and measuring by the SÚRO in Prague)
- Table No. 30a Dukovany NPP vicinity in the year 2005 (taken from the Dukovany NPP Report)
- Table No. 30b Temelín NPP vicinity in the year 2005 (taken from the Temelín NPP Report)
- Table No. 31 Dukovany NPP and Temelín NPP vicinity in the year 2005 (measuring by the LRKO)
- Table No. 32a Dukovany NPP vicinity in the year 2005 (sampling and measuring by the RC SÚJB in Brno)
- Table No. 32b Temelín NPP vicinity in the year 2005 (sampling and measuring by the RC SÚJB in České Budějovice)

Sample type	Total number of samples per year
Aerosols	522
Gases (¹⁴ CO ₂ , ⁸⁵ Kr)	36
Fallouts	155
Soils	Samples measured within MS exercise
Drinking water	42
Surface water	60
Water treatment sludge	5
Stream-laid sediment	5
Milk	119
Meat	403
Wild-animal meat	87
Fish	44
Potatoes	11
Cereals	34
Vegetable	29
Fruits	26
Honey	13
Forest fruits	37
Mushrooms	75
Urines	71
Persons	28
Fodder grass	13
Silage	3
Feedstuffs	12
Fodder	42

Table No. 1 Summary of the number of samples analysed in the year 2005 within RMS

Note:

Samples analysed within the independent monitoring of nuclear facilities are not included in the number of analysed samples.

Table No. 2 Monthly mean values of the tissue kerma rate in the year 2005 (measuring by the ARMS)

Measuring											
point	101	102	201	202	204	205	207				
	[µGy/h]										
January	0.13	0.15	0.11	N	0.11	0.13	N				
February	0.13	0.14	0.11	N	0.12	0.13	N				
March	0.13	0.13	N	N	0.12	N	0.15				
April	0.13	0.15	N	N	0.12	0.13	0.15				
May	0.13	0.15	Ν	Ν	0.12	0.14	0.15				
June	0.14	0.15	N	N	0.12	0.13	0.15				
July	0.14	0.15	Ν	Ν	0.11	0.13	0.15				
August	0.14	0.16	N	0.11	0.11	0.13	0.16				
September	0.14	0.16	0.12	0.14	0.11	0.13	0.15				
October	0.13	0.14	0.11	0.14	0.11	0.14	0.15				
November	0.13	N	0.11	0.15	0.11	0.13	0.15				
December	0.13	0.14	0.11	0.15	N	0.13	0.14				
Measuring											
point	208	209	210	301	302	303	401				
		•	•	[µGy/h]	•						
January	0.14	N	N	0.13	0.15	0.13	N				
February	0.14	N	Ν	0.13	0.15	0.13	0.14				
March	0.14	N	Ν	0.14	0.15	0.13	0.14				
April	0.14	N	N	0.14	0.15	0.13	0.16				
May	0.14	N	N	0.14	0.15	0.13	0.17				
June	0.14	N	N	0.14	N	0.13	0.16				
July	N	N	N	0.15	0.15	0.14	0.16				
August	0.14	N	0.14	0.15	N	0.13	0.15				
September	N	N	0.15	0.16	Ν	0.10	0.14				
October	0.11	0.12	0.15	0.16	Ν	0.10	0.14				
November	Ν	0.13	0.15	0.17	0.14	0.10	0.14				

0.15

0.15

0.10

0.14

0.16

Note:

December

N - not measured due to measuring instrument failure

0.13

0.11

	TIOF	TT /0 =			Mean
Measuring point	1/05	11/05	111/05	IV/05	value
			nSv/h		
Benešov	121	122	120	126	122
Benešov b	116	103	108	111	110
Beroun	118	123	125	126	123
Beroun b	115	107	120	120	115
Blansko	115	100	99	98	103
Blatná	145	145	153	140	146
Brandýs nad Labem	83	86	97	95	90
Brno	117	126		111	118
Brno b	136	121	110	117	121
Broumov	134	126	126	118	126
Bruntál	118	129	107	109	116
Červena Voda	126	140	139	140	136
Červena Voda b	208	201	178	206	198
Česká Lípa	107	115	101	107	107
Česká Lípa b	117	117	103	110	112
České Budějovice	136	137	133	123	132
České Budějovice b	161	151	152	148	153
Český Krumlov	155	139	147	130	143
Český Krumlov b	151	146	151	150	150
Děčín	79	101	80	79	85
Dobrá Voda	128	132	141	120	130
Doksy	90	104	96	88	95
Domažlice	92	121	104	99	104
Domažlice b	140	155	148	153	149
Frýdlant nad Ostravicí	78	89	86	88	85
Havlíčkův Brod	132	129	139	125	131
Havlíčkův Brod b	142	131	136	135	136
Hodonín	93	85	85	80	86
Hodonín b	149	128	123	122	131
Hojsova Stráž	95	136	135	119	121
Hradec Kralové	104	103	99	105	103
Hradec Kralové b	124	108	104	111	112
Hradec Kralové-SVZ	115	104	104	110	108
Hranice	103	109	89	103	101
Humpolec	141	138	147	126	138
Husinec	116	110	121	121	117
Cheb	75	95	88	88	86
Chrudim	125	120	126	119	123
Churáňov	88	142	139	118	122

Table No. 3 Quarterly mean values of the photon dose equivalent rate measuredby TLD territorial network in the year 2005 (measuring by the SÚRO -
transport of dosimeters from/to measuring points by relevant RC SÚJB)

Contd. Table No. 3 Quarterly mean values of the photon dose equivalent rate measured by TLD territorial network in the year 2005 (measuring by the SÚRO - transport of dosimeters from/to measuring points by relevant RC SÚJB)

					Mean
Measuring point	1/05	11/05	III/05	IV/05	value
			nSv/h		
Ivančice	105	121	116	113	114
Jaroměřice nad Rokytnou	149	153	141	138	146
Jeseník	90	88	84	78	85
Jeseník b	134	126	124	122	127
Jičín	121	120	124	127	123
Jihlava	109	115	100	110	108
Jihlava b	167	152	145	148	153
Jindřichův Hradec	120	130	133	128	128
Jindřichův Hradec b	127	133	138	133	132
Karlovy Vary	101	126	132	122	120
Karlovy Vary b	81	99	81	95	89
Kladno	140	133	140	140	138
Klatovy	103	131	120	114	117
Klatovy b	141	143	140	143	142
Kolín	102	100	102	103	102
Koryčany	116	110	105	104	109
Košetice	130	133	126	116	126
Košetice b	110	107	106	98	105
Kralovice	82	113	103	97	99
Kraslice	94	148	134	117	123
Kroměříž	104	100	93	98	99
Kutná Hora *)				99	99
Kutná Hora b	131	123	122	126	125
Liberec	130			163	146
Liberec b	171	165	144	173	164
Litoměřice	95	104	100	92	98
Litoměřice b	121	119	115	118	118
Louny	109	116	103	111	110
Mariánské Lázně	100	125	104	103	108
Mariánské Lázně b	135	138	93	92	114
Měděnec	84	111	98	88	95
Mělník	100	101	100	108	102
Mělník b	127	120	120	127	124
Mikulov	105	112	96	87	100
Milevsko	167	166	179	171	171
Milevsko b	169	152	145	132	149
Mladá Boleslav	104	97	102	99	101
Mladá Boleslav b	104	96	98	102	100

Contd. Table No. 3 Quarterly mean values of the photon dose equivalent rate measured by TLD territorial network in the year 2005 (measuring by the SÚRO - transport of dosimeters from/to measuring points by relevant RC SÚJB)

					Mean	
Measuring point	I/05	II/05	III/05	IV/05	value	
		nSv/h				
Mníšek pod Brdy	116	125	112	123	119	
Most	104		102	103	103	
Most b	108	105	102	104	105	
Náchod	110	116	112	104	111	
Náchod b	105	107	106	110	107	
Nepomuk	147	161	164	157	157	
Nová Bystřice	126	145	148	132	138	
Nová Říše	125	123	127	122	124	
Nová Ves v Horách	86	124	108	100	105	
Nové Město pod Smrkem	90	125	93	106	104	
Nový Jičín	96	107	86	90	95	
Nymburk	93	92	93	99	94	
Nymburk b	118	113	118	122	118	
Odry b	123	111	103	105	111	
Olešník	123		132	123	126	
Olomouc	101	98	83	95	94	
Olomouc b	130	112	99	112	113	
Opava	100	96	91	91	95	
Opava b	125	112	104	110	113	
Opočno	96	112	106	107	105	
Osoblaha	122	112	112	110	114	
Ostrava - Poruba hospital	107	106	109	106	107	
Ostrava - Syllabova	107	98	95	98	100	
Ostrava - Syllabova b	128	119	112	119	119	
P 1 - SÚJB - SVZ	104	95	100	106	101	
P 1 - SÚJB b	125	120	120	129	124	
P10 - Hostivař	132	124	141	133	133	
P10 - SÚRO - SVZ	101	99	104	108	103	
P10 - SÚRO b - reference	127	117	119	120	121	
P4 - Libuš - západ	115	103	108	108	108	
P4 - Libuš - západ b	99	106	112	110	107	
P5 - Na Černém vrchu	119	115	121	126	120	
P5 - Na Černém vrchu b	135	125	132	133	132	
P6 - Ruzyně - Airport	104	102	103	109	105	
P7 - Zoologická zahrada	99	103	103	108	103	
P8 - Za střelnicí	130	122	126	128	126	
P8 - Za střelnicí b	142	129	133	132	134	
Pardubice	99	112	116	115	110	

Contd. Table No. 3 Quarterly mean values of the photon dose equivalent rate measured by TLD territorial network in the year 2005 (measuring by the SÚRO - transport of dosimeters from/to measuring points by relevant RC SÚJB)

	- 10 -				Mean
Measuring point	1/05	11/05	111/05	IV/05	value
		100	nSv/h	110	110
Pec pod Snežkou	/9	133	120	118	113
Pec pod Snežkou b	143	126	125	127	130
Pelhřimov	186	156	159	155	164
Pelhřimov b	203	173	190	180	187
Písek	148	145	145	130	142
Písek b	164	151	155	144	154
Plzeň	103	109	104		105
Plzeň - SVZ	105	122	110	109	111
Plzeň b	129	137	121	126	128
Prachatice		128	131	120	126
Prachatice b	145	117	130	124	129
Prostějov	112	107	99	100	105
Přerov	79	112	99	106	99
Příbram	121	123	127	130	125
Příbram b	186	179	178	186	182
Přimda	105	134	119	110	117
Přimda b	146	157	140	147	148
Rakovník	200	205	207	223	208
Rakovník b	227	229	234	227	229
Rychnov nad Kněžnou	115	107	107	111	110
Řež	104	105	103	109	105
Sedlčany	189	202	191	205	197
Semily	91	103	105	102	100
Soběslav	110	102	102	97	103
Souš	63	134	125	106	107
Staňkov	106	115	108	115	111
Staňkovice	127	135	136	136	134
Strakonice	130	134	138		134
Strakonice b	154	131	137	126	137
Strání	95	98	95	93	95
Stříbro	98	119	107	103	107
Stříbro b	138	134	122	127	130
Svitavy	120	116	119	118	118
Šluknov	88	102	100	97	97
Šumperk	82	104	97	100	96
Tábor	166	175	174	165	170
Tábor b		156	148	145	149
Temelín	119	132	134	115	125

Contd. Table No. 3 Quarterly mean values of the photon dose equivalent rate measured by TLD territorial network in the year 2005 (measuring by the SÚRO - transport of dosimeters from/to measuring points by relevant RC SÚJB)

					Mean
Monitoring point	I/05	II/05	III/05	IV/05	value
			nSv/h		
Teplice	147	160	150	157	153
Trutnov	107	142	127	120	124
Třebíč	169	156	171	160	164
Třinec	78	88	92	81	85
Uherské Hradiště	114	100	93	99	101
Uničov	106	113	106	110	109
Ustí nad Labem - Habrovice	78	75	80	79	78
Ustí nad Labem - Habrovice b	160	124	126	130	135
Ustí nad Labem - Kočkov	95	96	106	130	107
Ustí nad Labem - Střekov	87	89	84	83	86
Ústí nad Orlicí	118	124	119	117	120
Vír	130	128	135	124	129
Vítkov	125	127	120	122	123
Vlašim *)	106	111	110	111	110
Volary	112	123	132	118	121
Vranov nad Dyjí	111	101	97	95	101
Vsetín	90	100	101	100	98
Vyškov	120	118	110	116	116
Vyšší Brod	194	190		152	178
Zákřany	131	133	123	130	129
Zbiroh	93	109	102	107	103
Zbiroh b	122	120	116	107	116
Zlín	130	94	89	88	100
Zlín b	102	110	105	108	106
Znojmo	130	120		123	124
Znojmo b	149	118	120	129	129
Žatec	103	119	98	103	106
Žatec b	156	132	130	135	138
Žďár nad Sázavou	105	123	115	113	114
Žlutice	96	107	101	96	100
Žlutice b	168	167	153	161	162

If the result is not provided, the dosimeter was stolen or damaged in the relevant location.

Letter "b" after the name of measuring point indicates placement of the dosimeter inside the building. Sign "*" indicates displacement of the measuring point within the location in the relevant year.

Table No. 4Quarterly mean values of the photon dose equivalent rate measured by
TLD local network in the vicinity of Dukovany NPP in the year 2005 (measuring
by the LRKO Moravský Krumlov, taken from the Dukovany NPP Report)

Measuring point	I/05	II/05	III/05	IV/05	Mean value			
Witasui ing point	nSv/h							
Biskupice	94	76	94	97	90			
Březník	90	90	79	115	94			
Čučice	94	72	79	97	86			
Dalešice	79	90	76	119	91			
Dolní Dubňany	65	50	54	68	59			
Dukovanský mlýn	50	47	43	65	51			
Dukovany	94	68	83	94	85			
Hartvíkovice	101	86	97	115	100			
Hrotovice	119	119	112	140	123			
Hrotovice - Stínský rybník	72	54	58	65	62			
Hrubšice	97	79	83	104	91			
Ivančice	79	72	68	97	79			
Jaroměřice nad Rok.	94	83	86	140	101			
Jevišovice	104	104	104	104	104			
Kordula	86	90	79	115	93			
Kordula - grass-land	43	32	32	43	38			
Lipňany - plain	47	47	40	54	47			
Mikulovice	72	68	65	94	75			
Mohelno	43	40	40	58	45			
Mohelno - Horákův buk	58	65	58	83	66			
Moravský Krumlov	97	61	79	83	80			
Myslibořice	115	108	104	133	115			
Náměšť n. Oslavou	79	68	76	94	79			
Oslavany	101	76	83	104	91			
Rouchovany	72	61	72	83	72			
Skryjský mlýn	54	43	54	65	54			
Slavětice	83	65	68	86	76			
Tavíkovice	86	61	79	86	78			
Trstěnice	79	65	68	94	77			
Třebíč	144	119	133	151	137			
Udeřice	90	90	79	112	93			
Valeč	94	65	86	90	84			
Vémyslice	104	83	86	108	95			
Višňové	86	68	76	90	80			
Vranov nad Dyjí	86	72	76	97	83			
Znojmo	72	72	61	90	74			

The measuring points are placed 3 m above the ground.

Table No. 5Quarterly mean values of the photon dose equivalent rate measured by
TLD local network in the vicinity of Temelín NPP in the year 2005 (measuring
by the LRKO in České Budějovice, taken from the Temelín NPP Report)

Massuring point	I/05	II/05	III/05	IV/05	Mean value			
Wieasur ing point	nSv/h							
Býšov - ČEZ premises		116	123	123	121			
Býšov - forester's house								
Strouha	113	121	123	127	121			
Coufalka	116	127	130	133	127			
Coufalka - forester's house	122	126	133	127	127			
Červený Vrch	120	128	130	132	128			
Dříteň - No. 116	135	132	129	129	131			
Hněvkovice - ISOŠ	117	119	130	125	123			
Hněvkovice - dam	117	128	127	134	127			
Hůrka - soil sanitation	119	123	126	131	125			
Kočín - No. 8	120	128	127	129	126			
Lhota pod Horami - No. 27	144	178	147	162	158			
Lhota pod Horami - cowshed	121	127	130	131	127			
Lhota p. Horami- gasworks								
station	120	129	131	135	129			
Litoradlice, No. 10	115	118	123	126	121			
Malešice - No. 36	118	123	124	125	123			
Malešice - farm	108	113	114	115	113			
Neznašov	156	170	-	177	168			
Nová Ves, No.2	124	129	134	136	131			
Planovy - No. 38	131	144	131	144	138			
Předhájek - Všemyslice	161	162	164	161	162			
SRKO Bohunice	110	99	115	92	104			
SRKO ČEZ-Temelín NPP	121	118	122	125	122			
SKRO Litoradlice	122	124	131	129	127			
SRKO Nová Ves	130	142	141	144	139			
SRKO Sedlec	97	98	-	95	97			
SRKO Zvěrkovice	119	125	131	130	126			
Strachovice	114	106	86	112	105			
Temelín - meteorolog. station	118	128	110	102	115			
Temelín - at outpatient clinic	125	130	132	115	126			
Týn n. Vltavou – kindergarten	127	135	133	137	133			
Týn n. Vltavou – water level	120	127	128	126	125			
U palečků	117	120	127	131	124			
Všemyslice - No. 33	122	123	-	133	126			
Záluží	123	131	131	136	130			

If the result is not provided, the dosimeter was stolen or damaged in the relevant location.

Table No.6Quarterly mean values of the photon dose equivalent rate measured by
TLD local network in the vicinity of Dukovany NPP in the year 2005 (measuring
by the SÚRO – transport of dosimeters from/to measuring points by RC in Brno)

Massuring point	I/05	II/05	III/05	IV/05	Mean value		
Weasuring point	nSv/h						
Biskupice	107	106	107	107	107		
Dukovany	111	111	105	102	107		
Hartvíkovice	133	135	142	137	137		
Mohelno	109	107	111	112	110		
Moravský Krumlov	116	118	119	116	117		
Náměšť nad Oslavou	116	123	119	122	120		
Resice	125	120	121	123	122		
Rouchovany	113	-	105	110	109		
Skryje	71	71	70	67	70		
Slavětice	103	112	-	118	111		
Višňové	110	118	120	113	115		
Vladislav	144	152	160	161	154		

If the result is not provided, the dosimeter was stolen or damaged in the relevant location.

Table No. 7 Quarterly mean values of the photon dose equivalent rate measured byTLD local network in the vicinity of Temelín NPP in the year 2005 (measuringby the SÚRO – transport of dosimeters from/to measuring points by RC in ČeskéBudějovice)

Measuring point	I/05	II/05	III/05	IV/05	Mean value
			nSv/h		
Dívčice	137	133	132	133	134
Litoradlice	113	109	115	108	111
Mydlovary	139	140	147	142	142
Protivín	145	139	145	141	143
Radonice	120	112	124	110	116
Ševětín	122	122	130	121	123
Týn nad Vltavou	125	120	127	115	122
Vodňany	131	129	135	135	133
Zliv	137	132			135

Note:

If the result is not provided, the dosimeter was stolen or damaged in the relevant location.

Table No. 8Mean activity concentration of ¹³⁷Cs, ⁷Be and ²¹⁰Pb in the aerosols in the
air [Bq/m³] and mean surface activity of ¹³⁷Cs, ⁷Be and ²¹⁰Pb in fallouts [Bq/m²]
in the year 2005 (sampling and measuring by the RC SÚJB and SÚRO)

Component	Mean value *)	95% tolerance interval			Number of	measurements
	(arithmetic mean)				Total	> MVA
¹³⁷ Cs						
Aerosols	8.9E-07	3.1E-08	-	5.4E-06	522	277
Fallouts	4.2E-02	8.6E-04	-	3.7E-01	93	30
⁷ Be						
Aerosols	3.2E-03	5.9E-04	-	1.1E-02	522	521
Fallouts	7.3E+01	2.0E-01	-	8.4E+02	93	83
²¹⁰ Pb						
Aerosols	4.4E-04	6.1E-05	-	1.7E-03	489	469
Fallouts	9.1E+00	2.2E-02	-	1.2E+02	82	43

95% tolerance interval – interval, during which 95% of values of monitored quantity is expected.

MVA indicates the minimum significant activity for reliability level 95%.

*) The sampling point at SÚRO in Prague was chosen to the mean values for fallouts for the location in Prague and the sampling point ČB U nemocnice for the location of RC in České Budějovice.

Table No. 9 Activity concentration of ⁹⁰Sr in the air aerosol in the year 2005 (sampling by
the SÚRO in Hradec Králové and Prague, measuring by the SÚRO in Prague)

Sampling point	Quarter	Activity [Bq/m ³]
	1	<1.6E-07
Prome	2	<1.5E-06
Tague	3	1.3E-07
	4	<1.3E-07
	1	8.0E-08
Uradaa Vrálová	2	<4.2E-07
	3	1.1E-07
	4	<6.2E-08

Notes:

Activity determined from joint weekly samples in the relevant quarter. Sign "<" – minimum significant activity for reliability level 95%.

		²³⁸ Pu	^{239,240} Pu
Year	Quarter	Activity	Activity
		[Bq / m ³]	[Bq / m ³]
2001	1	2.1E-10	1.5E-09
	2	4.3E-10	1.49E-09
	3	< 2.1E-10	1.31E-09
	4	2.8E-10	1.6E-09
2002	1	< 2.1E-10	8.2E-10
	2	8.1E-10	2.15E-08
	3	1.78E-09	4.59E-08
	4	6.2E-10	5.06E-09
2003	1	< 5.2E-10	2.28E-09
	2	2E-10	4.06E-09
	3	3.1E-10	3.97E-09
	4	2.5E-10	2.5E-09
2004	1	< 7.4E-10	3.22E-09
	2	< 1.1E-9	<1.1E-09
	3	< 6.5E-10	1.23E-09
	4	3.2E-10	3.02E-09
2005	1	<3.1E-10	8.60E-10
	2	<4.0E-10	2.52E-09
	3	<1.7E-10	2.15E-09
	4	<3.5E-10	1.56E-09

Table No. 10 Activity concentration of ²³⁸Pu and ^{239,240}Pu in the air aerosol in the year2005 (sampling and measuring by the SÚRO)

Activity determined from joint weekly samples in the relevant quarter.

Sign "<" - minimum significant activity for reliability level 95%.

Table No. 11 Activity concentration of ³H, ⁹⁰Sr and ¹³⁷Cs in selected drinking sources in the year 2005 (sampling and measuring by the SÚRO in Prague and VÚV TGM in Prague*)

	Activity concentration [Bq/l]								
Sampling point		3]	H		¹³⁷ Cs	⁹⁰ Sr			
	1 st quarter	2 nd quarter	3 rd quarter	4 th quarter	Year	Year			
Káraný (Jizera)	1.1	1.0	1.0	1.4	< 3.3E-04	1.9E-03			
Jesenice (Želivka)	1.4	1.1	1.2	2.0	< 2.1E-04	3.8E-03			
Kružberk (Odra)	1.2	1.3	< 0.6	1.4	< 3.0E-04	< 2.0E-03			
Fláje (Ohře)	0.7	1.3	1.3	1.7	2.0E-03	< 2.0E-03			
Křižanovice (Labe)	< 0.6	1.5	1.5	1.4	< 3.0E-04	< 2.5E-03			

	Activity concentration [Bq/l]							
Sampling point		³]	¹³⁷ Cs	⁹⁰ Sr				
	1 st quarter	2 nd quarter	3 rd quarter	4 th quarter	Year	Year		
Vír (Morava)	1.6	1.3	0.9	< 0.7	< 3.0E-04	3.9E-03		
Římov (Vltava)	< 0.6	1.4	0.8	2.4	5.0E-04	5.1E-03		

Contd. Table No. 11 Activity concentration of ³H, ⁹⁰Sr and ¹³⁷Cs in selected drinking sources in the year 2005

*) Samplings and pre-treatment of samples for analyses performed by VÚV TGM ensured Povodí, s.p. Sign "<" – minimum significant activity for reliability level 95%.

Table No. 12 Activity concentration	of ³ H,	⁹⁰ Sr an	d ¹³⁷ Cs i	1 surface	water in	ı the year
2005 (sampling and measuring	g by the	e VÚV I	GM in Pr	ague*)		

	Activity concentration [Bq/l]							
Basin - profile	-	3	¹³⁷ Cs	⁹⁰ Sr				
	1 st	2 nd	3 rd	4 th	Voar	Voor		
	quarter	quarter	quarter	quarter	I Cal	Itai		
Odra - Bohumín	1.1	1.7	1.7	1.8	< 4.0E-04	< 2.0E-3		
Odra - Kružberk (Moravice)	1.7	< 0.6	1.3	1.2	< 3.0E-04	3.1E-03		
Ohře - Fláje (Flájský potok)	< 0.6	1.3	1.4	1.6	1.6E-03	< 2.0E-03		
Ohře - Přísečnice (Přísečnický								
potok)	2.1	< 0.6	2.0	1.4	< 3.0E-04	< 2.6E-03		
Labe - Hřensko	3.0	3.6	4.1	6.8	5.0E-04	< 2.0E-03		
Labe - Křižanovice (Chrudimka)	< 0.6	1.1	2.3	1.5	5.0E-04	< 2.3E-03		
Morava - Moravský Svatý Ján	10.3	7.7	11.9	15.5	5.0E-04	4.0E-03		
Morava - Vír (Svratka)	1.4	1.7	0.7	< 0.7	4.0E-04	3.4E-03		
Vltava - Švihov (Želivka)	1.7	0.9	0.6	0.9	< 5.0E-04	< 2.0E-03		
Vltava - Římov (Malše)	1.2	0.7	1.0	1.7	6.0E-04	6.0E-03		

Notes:

*) Samplings and pre-treatment of samples for analyses performed by VÚV TGM ensured Povodí, s.p. Sign "<" – minimum significant activity for reliability level 95%.

Table No. 13Activity mass values of ¹³⁷Cs in the water treatment sludge and stream-
laid sediments in the year 2005 (sampling and measuring by the VÚV TGM in
Prague)

Desir ruefile	Water treatment sludge	Stream-laid sediments		
basin - prome	[Bq / kg of dry matter]			
Odra - Kružberk (Moravice)	9	3		
Ohře - Fláje (Flájský potok)	26	84		
Labe - Křižanovice (Chrudimka)	11	8		
Morava - Vír (Svratka)	10	44		
Vltava - Římov (Malše)	8	116		

Component	Unit	Range of measu	Number of measurements		
_				Total	> MVA
Milk	Bq/l	< 5.0E-03 -	9.3E-01	99	87
Beef	Bq/kg	< 4.0E-02 -	1.3E+00	100	51
Pork	Bq/kg	< 3.1E-02 -	1.7E-01	29	11
Poultry	Bq/kg	< 5.6E-02 -	2.8E-01	28	11
Other meat	Bq/kg	< 3.5E-02 -	1.4E-01	12	3
Wild-animal meat	Bq/kg	1.2E+00 -	1.3E+03	3	3
Fish	Bq/kg	< 3.8E-02 -	3.3E-01	5	4
Fruits	Bq/kg	<1.1E-02 -	4.2E-02 **)	20	2
Vegetable	Bq/kg	< 9.9E-03 -	1.7E-01 **)	21	3
Forest fruits	Bq/kg	< 2.1E-02 -	8.5E+01	16	12
Mushrooms	Bq/kg	< 2.4E-01 -	1.3E+03	24	23

Table No. 14aActivity mass and concentration of ¹³⁷Cs in selected foodstuffs in
the year 2005 (sampling and measuring by the RC SÚJB and SÚRO)

MVA - minimum significant activity for reliability level 95%.

Sign "<" - minimum significant activity for reliability level 95%.

*) With regard to data file properties, the range of measured values is used as data file characteristics; in the event that the file contains some values below MVA, the lowest MVA value is indicated; in the event that there was no value detected above MVA, the range of MVA values is indicated.

**) The highest value MVA 2.3E-01 Bq/kg was determined in the "Fruits" commodity, which is higher than maximum determined activity, and the highest value MVA 3.6E-01 Bq/kg was determined in the "Vegetable" commodity, which is higher than maximum determined activity.

Table No.	14b	Activity	mass	of	¹³⁷ Cs	in	selected	foodstut	ffs i	n the	year	2005
	(sampling	by the SV	/Ú, SZ	PI,	VÚLH	Μ	and VÚV	T.G.M.,	mea	suring	by the	SVÚ
	and VÚV '	T.G.M)										

Component	Unit	Danga of m		wad values *)	Number of measurements		
Component		Range of n	neasu	red values ")	Total	> MVA	
Powdered milk	Bq/kg	< 5.0E-02	-	8.2E-01	20	15	
Beef	Bq/kg	< 4.5E-02	-	4.0E+00	91	43	
Pork	Bq/kg	< 4.0E-02	-	2.4E-01	89	32	
Poultry	Bq/kg	< 5.0E-02	-	4.1E-01	47	18	
Other meat	Bq/kg	1.2E-01	-	1.8E-01	7	7	
Wild-animal meat	Bq/kg	< 5.0E-02	-	5.4E+02	84	61	
Fish	Bq/kg	< 5.0E-02	-	9.4E-01	39	24	
Honey	Bq/kg	< 5.0E-02	-	1.9E+00	13	6	
Fruits	Bq/kg	< 5.0E-02	-	< 5.0E-02	6	0	
Vegetable	Bq/kg	< 5.0E-02	-	< 5.0E-02	8	0	
Forest fruits	Bq/kg	8.4E-01	-	7.8E+02	21	21	
Mushrooms	Bq/kg	3.8E+00	-	8.9E+03	51	51	

Note:

*) a **) See notes below Table No. 14 a.

MVA – minimum significant activity for reliability level 95%.
14c Activity mass and concentration of 137 Cs in selected foodstuffs in the year 2005 (sampling by the RC SÚJB, SÚRO, SVÚ, SZPI, VÚLHM and Table No. 14c VÚV T.G.M., measuring by the RC SÚJB, SÚRO and SVÚ)

Component	Unit	Range of	meas	sured values *)	Number of measurements			
•		C		,	Total	> MVA		
Milk ***)	Bq/l	< 5.0E-03	-	9.3E-01	119	102		
Beef	Bq/kg	< 4.0E-02	-	4.0E+00	191	94		
Pork	Bq/kg	< 3.1E-02	-	2.4E-01	118	43		
Poultry	Bq/kg	< 5.0E-02	-	4.1E-01	75	29		
Other meat	Bq/kg	< 3.5E-02	-	1.8E-01	19	10		
Wild-animal meat	Bq/kg	< 5.0E-02	-	1.3E+03	87	64		
Fish	Bq/kg	< 3.8E-02	-	9.4E-01	44	28		
Honey	Bq/kg	< 5.0E-02	-	1.9E+00	13	6		
Fruits	Bq/kg	< 1.1E-02	-	4.2E-02 **)	26	2		
Vegetable	Bq/kg	< 9.9E-03	-	1.7E-01 **)	29	3		
Forest fruits	Bq/kg	< 2.1E-02	-	7.8E+02	37	33		
Mushrooms	Bq/kg	< 2.4E-01	-	8.9E+03	75	74		

MVA - minimum significant activity for reliability level 95%.

*) a **) See notes below Table No. 14a. ***) The item includes also the samples of milk measured at SVÚ, activity concentration of which was estimated by means of activity mass of powdered milk and concentration factor 5 to 10.

Table No	. 15	A	l cti	ivit	y	co	onc	ent	tra	tion	1	of	⁹⁰ S	r	in	n	nilk	in	t	the	yea	r	2005	(s	ampling	ar	ıd
	me	eas	suri	ng	by	y t	he	SÚ	RC) in	Η	rac	lec	K	rálo	ove	é, C	stra	ava	a ar	ld P	rag	gue)				

Supplier	Quarter	Activity concentration [Bq/l]
	1	1.7E-02
Dairy works of the	2	3.1E-02
Region	3	3.3E-02
	4	5.1E-02
	1	4.2E-02
Business network of	2	4.9E-02
Silesian Region	3	2.4E-02
	4	3.5E-02
	1	8.3E-02
Business network of	2	4.6E-02
Olomouc	3	3.0E-02
	4	-

Contd. Table No. 15 Activity concentration of ⁹⁰Sr in milk in the year 2005 (sampling and measuring by the SÚRO in Hradec Králové, Ostrava and Prague)

Supplier	Quarter	Activity concentration [Bq/l]
	1	3.1E-02
Dairy works in	2	7.7E-02
Kunín	3	2.9E-02
	4	1.8E-02
	1	4.6E-02
Dairy works in Olomouc	2	7.3E-02
	3	3.9E-02
	4	2.4E-02
	1	7.3E-02
Dairy works in	2	3.4E-02
Valašské Meziříčí	3	3.2E-02
	4	2.0E-02
	1	4.0E-02
Dairy works in	2	5.7E-02
Zábřeh	3	1.5E-02
	4	6.1E-02

Note:

Random sampling was performed in the indicated quarter.

Table No.16aActivity mass of ¹³⁷Cs in cereals and in potatoes in the year 2005
(sampling and measuring by the RC SÚJB and SÚRO)

Product	Activity mass [Bq/ kg]
Barley	2.6E-02
Oat	7.3E-02
Wheat	4.0E-02
Rye	5.5E-02
Potatoes	3.5E-02

Note:

One concentrated sample from the whole Czech Republic was measured for each commodity.

Table No. 16b	Activity mass of ¹	¹³⁷ Cs in cereals	and in	potatoes in	the year	2005
(sampling	, by the SZPI, measu	ring by the SVÚ)			

Component	Activity mass	Number of measurements			
Component	[Bq / kg] ^{*)}	Total	> MVA		
Barley	< 5.0E-02	2	0		
Oat	< 3.5E-02 - 1.0E-01	2	1		
Wheat	< 5.0E-02	2	0		
Rye	1.1E-1	2	2		
Potatoes	< 3.0E-02 - 1.0E-01	4	1		

MVA - minimum significant activity for reliability level 95%.

Sign "<" - minimum significant activity for reliability level 95%.

*) With regard to data file properties, the range of measured values is used as data file characteristics; in the event that the file contains some values below MVA, the lowest MVA value is indicated; in the event that there was no value detected above MVA, the range of MVA values is indicated.

Table No. 17 Activity mass of ⁹⁰Sr in cereals in the year 2005 (sampling and measuring by
the SÚRO in Prague) – crop 2005

Cereals	Sampling point	Activity [Bq/kg]
Wheat	Central Bohemia	1.2E-01
Barley	Central Bohemia	1.2E-01
Nata		

Note:

Estimate of combined uncertainty of determination 90Sr at reliability level 95% is 10%.

Table No. 18 Activity mass and concentration of ¹³⁷Cs in selected feedstuffs in the year 2005(sampling by the ÚKZÚZ, measuring by the SVÚ in Prague)

Component	Range of measured	Number of measurements				
Component	values [Bq/ kg]*)	Total	> MVA			
Fodder grass	< 5.0E-02 - 4.1E+0	13	11			
Silage	< 7.0E-01 – 2.8E-01	3	2			
Feedstuff	< 5.0E-02 - 3.3E+0	12	6			
Fodder	< 5.0E-02 - 2.3E+01	42	33			

Note:

MVA - minimum significant activity for reliability level 95%.

Sign "<" - minimum significant activity for reliability level 95%.

*) With regard to data file properties, the range of measured values is used as data file characteristics; in the event that the file contains some values below MVA, the lowest MVA value is indicated;

	•	· · · ·	•••
V	entilation stack	VK - 1	VK - 2
Da	ate of sampling	29.9.2005	29.9.2005
Nuclide	Half life	[Bq	/m ³]
⁴¹ Ar	1.82 h	290	560
⁸⁵ Kr	10.7 y	< 1	5
¹³³ Xe	5.25 d	< 10	< 10
¹³⁵ Xe	9.10 h	< 5	< 20

Table No. 19 Activity concentration of noble gases from the samples taken fromDukovany NPP ventilation stacks (sampling and measuring by the SÚRO in Prague)

Note:

Sign "<" indicates the minimum significant activity for reliability level 95%.

The measuring was performed at SÚRO laboratory in Prague several hours after sampling so the radionuclides with short half-life periods could not be determined.

The arithmetic mean of activity concentrations determined from measurement of 2 samples is indicated for individual days.

Sampling was performed during the outage of Unit 1 reactor, other three reactors were in normal operation.

Table No. 20 Activity concentrations [Bq/m³] of ¹⁴C in Dukovany NPP ventilation stacks(sampling by the SÚRO in Prague, measuring by the ODZ ÚJF AV ČR)

Ventilation stack	VK - 1		VK - 2			
Date of sampling	Combustible forms CO ₂		Combustible forms	CO ₂		
	[Bq/m ³]		[Bq/m ³]			
16.10.2002	Not valued	Not valued	15.8	6.2		
16.4.2003	7.4	1	6.3	1.6		
29.4.2004	< 1.5	2.9	10.8	4.1		
8.7.2004	33.2	< 1.0	32.3	4		
29.9.2005	21.4*)	5.6*)	17.2	2.8		

Note:

Sign "<" indicates the minimum significant activity for reliability level 95%.

*) Sampling performed during the outage of Unit 1 reactor, other three reactors were in normal operation.

Table No. 21 Activity of ⁹⁰Sr and transuranium elements discharged to the atmosphere
from Dukovany NPP in the year 2005 (sampling by the LRKO at Dukovany
NPP, measuring by the SÚRO in Prague)

Ouarter	Ventilation	Activity [Bq]								
Quarter	stack	²³⁸ Pu	^{239,240} Pu	²⁴¹ Am	²⁴² Cm	^{243,244} Cm	⁹⁰ Sr			
1		71	61	79	<40	71	<530			
2		250	110	240	<26	400	<720			
3	VK - 1	370	180	250	290	430	820			
4		480	240	340	340	620	380			
Total		11171	591	909	>630<696	1521	>1200;<2450			
1		73	50	120	150	83	430			
2		52	38	<23	<64	<27	<310			
3	VK - 2	<34	<34	<22	<34	<20	<540			
4		<29	<33	<47	<58	<37	400			
Total		>125<188	>88<155	>120<212	>150<306	>83<167	>830;<1680			

Sign "<" indicates the minimum significant activity for reliability level 95%.

	Ventilation stack 1	Ventilation stack 2			
	Activity, activity ra	ange [GBq, MBq, kBq]			
Noble gases [GBq]					
Total ¹⁾	(6 680			
¹³³ Xe	159	111			
¹³⁵ Xe	168	42.6			
³ H [GBq]	359	436			
¹³¹ I in total [MBq]	~	<10.6			
Gaseous form	<5.20	<5.20			
¹⁴ C * ⁾ [GBq]		799			
Aerosols [kBq]		-			
⁵¹ Cr	>1 180; <2 000	>3 000; <3 750			
⁵⁴ Mn	>814; <858	>3 370; <3 380			
⁵⁹ Fe	>147; <333	>616; <787			
⁵⁷ Co	<83.2	>4.41; <86.0			
⁵⁸ Co	>2 070; <2 130	>7 520; <7 550			
⁶⁰ Co	>2 430; <2 450	>6 690; <6 700			
⁶⁵ Zn	<276	<276			
⁷⁵ Se	<146	<146			
⁹⁵ Zr	>317; <480	>834; <987			
⁹⁵ Nb	>763; <837	>1 740; <1 810			
¹⁰³ Ru	>82.5; <183	<104			
^{110m} Ag	>1 730; <2 110	>2 700; <3 050			
¹²⁴ Sb	>1 090; <1 190	>2 700; <3 050			
¹³⁴ Cs	<104	<104			
¹³⁷ Cs	<120	>45.4; <160			
¹⁴¹ Ce	<146	<146			
¹⁴⁴ Ce	<624	>127; <726			
¹³¹ I	<114	<114			
⁷⁶ As	>196; <400	>780; <984			
¹⁸¹ Hf	>170; <266	>110; <208			
⁸⁹ Sr	<12.0	<12.0			
⁹⁰ Sr	< 1.32	<1.32			

Table No. 22 Overview of activities of individual radionuclides discharged to the air from Dukovany NPP in the year 2005 (taken from the Dukovany NPP Report)

Note: ¹⁾ Summary value VK 1 + VK 2 (⁴¹Ar, ⁸⁵Kr, ^{85m}Kr, ⁸⁷Kr, ⁸⁸Kr, ¹³³Xe, ¹³⁵Xe, ^{135m}Xe, ¹³⁸Xe) *) Summary value VK 1 + VK 2

	Activity [GBq, kBq]					
	1 st two-unit block	2 nd two-unit block				
³ H [GBq]	7 740	6 160				
Other radionuclides						
[kBq]						
⁵¹ Cr	<1 380	<1 440				
⁵⁴ Mn	>2 050; <2 080	>2 020; <2 090				
⁵⁹ Fe	<276	<288				
⁵⁷ Co	<115	<120				
⁵⁸ Co	>2 470; <2 500	>2 930; <2 990				
⁶⁰ Co	>4 090; <4 130	>3 200; <3 240				
⁶⁵ Zn	<391	<408				
⁷⁵ Se	<207	<216				
⁹⁵ Zr	<276	<288				
⁹⁵ Nb	<138	<144				
¹⁰³ Ru	<138	<144				
^{110m} Ag	>1 050; <1 180	<216				
¹²⁴ Sb	>163; <317	>763; <924				
¹³⁴ Cs	>640; <748	>168; <306				
¹³⁷ Cs	>2 990; <3 050	>1 730; <1 790				
¹⁴¹ Ce	<207	<216				
¹⁴⁴ Ce	<920	<960				
¹³¹ I	<161	<168				
⁸⁹ Sr	<420	<420				
⁹⁰ Sr	<24.0	<24.0				

Table No. 23 Overview of radioactive substances discharged to the streams from
Dukovany NPP in the year 2005 (taken from the Dukovany NPP Report)

Indicated values are summary of 12 values from monthly measurements.

Table No. 24 Activity concentrations of noble gases from the samples taken from Temelín NPP internal ventilation stacks (sampling by the ČEZ, a.s. – Temelín NPP, measuring by the SÚRO in Prague)

Ver	ntilation stack	HVB - 1			HV	BAPP	
Dat	e of sampling	31.3.2005 * 25.5.2005 14.12.2005 31.3.2005 17.8.2005 17.8.					
Nuclide	Half life			[Bq /1	m ³]		
⁴¹ Ar	1.82 h	< 100 *	660	620	900	500	< 60
⁸⁵ Kr	10.7 y	300 *	4	89	9	15	< 1
^{85m} Kr	4.48 h	< 40 *	< 30	< 10	140	< 70	< 70
⁸⁷ Kr	1.27 h	Not valued	< 100	< 130	< 100	< 300	< 230
⁸⁸ Kr	2.86 h	< 60 *	< 40	< 40	< 80	< 80	< 80
¹³³ Xe	5.25 d	23000 *	900	80	< 200	< 500	< 470
^{133m} Xe	2.19 d	130 *	< 20	< 10	< 10	< 20	< 20
¹³⁵ Xe	9.10 h	85 *	150	80	370	300	< 20

Sign "<" indicates the minimum significant activity for reliability level 95%.

The measuring was performed at SÚRO laboratory in Prague several hours after sampling so the radionuclides with short half-life periods could not be determined.

The arithmetic mean of activity concentrations determined from measurement of 2 samples is indicated for individual days.

* Sampling was performed several days after the beginning of the reactor outage.

Samplings from HVB-1 and HVB-2 are performed only from internal ventilation stacks.

Table No. 25 Activity concentrations of ¹⁴C in Temelín NPP ventilation stacks (sampling
by the ČEZ, a.s. – Temelín NPP, measuring by the ODZ ÚJF AV ČR)

Ventilation stack (VK)	Internal VK HVI	8-1	Internal VK HVI	3-2	BAPP	
Date of sampling	Combustible forms	CO ₂	Combustible forms	CO ₂	Combustible forms	CO ₂
	[Bq/m ³]		[Bq/m ³]		[Bq/m ³]	
31.5.2002	290	9.2	Unit not in operati	ion	Not valued	
8.10.2002	65	6.3	Unit not in operati	ion	Not valued	
22.1.2003	55	6.5	Unit not in operati	ion	Not valued	
25.6.2003	211	14	Unit not in operati	ion	Not valued	
12.12.2003	1480	22	Unit not in operation		Not valued	
12.12.2003	520	16	Unit not in operati	ion	Not valued	
4.2.2004	22	57	319	10	Not valued	
26.5.2004	Unit shut down		14	1.9	Not valued	
8.9.2004	180	2.7	210	8	Not valued	
31.3.2005	89*	5.3*	37	1.6	Not valued	
25.5.2005	56	3.2	Unit shut down		Not valued	
				<		
17.8.2005	Unit shut down		59	0.6	2.6	< 0.9
14.12.2005	<0.7		Unit shut down		Not valued	

Note:

Sign "<" indicates the minimum significant activity for reliability level 95%.

Unless otherwise stated, samplings are performed during normal operation of reactors.

* Sampling was performed several days after the beginning of the reactor outage.

Table No. 26 Activity of ⁹⁰Sr and transuranium elements discharged to the atmospherefrom Temelín NPP in the year 2005 (sampling by the LRKO at Temelín NPP,measuring by the SÚRO in Prague)

	T T •4	Ventilation		Activity [Bq]				
Quarter	Unit	stack *)	²³⁸ Pu	^{239,240} Pu	²⁴¹ Am	²⁴² Cm	^{243, 244} Cm	⁹⁰ Sr
1		Internal	<4.5	<4.9	<6.9	<19	<3.5	<220
1		External	-	-	-	-	-	-
2		Internal			45	<15	<5.2	<120
2		External			110	<51	<13	<340
2	HVB-1	Internal	65	<5.5	<15	<16	<6.5	120
3		External	71	<8.2	<74	<39	<12	160
1		Internal	150	<11	<3.6	<3.3	<1.6	100
4		External	<11	<13	<9.3	<6.5	<5.0	<250
			>286;	>101;	>155;	<150	<47	>380;
Total			<341	<144	<264			<1310
1		Internal	<7.0	<8.1	<4.5	<20	<3.6	150
1		External	-	-	-	-	-	-
2		Internal			18	<24	<3.8	<82
2		External			68	<79	<13	<190
3	HVB-2	Internal	8.8	<4.7	<53	<22	<8.8	<250
5		External	5	<2.6	7.5	<9.0	<3.1	<83
1		Internal	60	<12	<5.8	<4.3	<2.0	<220
4		External	-	-	-	-	-	-
								>150;
Total			-	-	-	-	-	<975
1			<45	<45	<35	<110	<18	670
2								400
3	BAPP		120	27				<900
4	2		160	39	<23	<20	<9.0	<500
			>560;	>66;	>190;	>240;		>1070;
Total			<605	<149	<328	<417	<102	<2470

Sign "<" indicates the minimum significant activity for reliability level 95%.

*) The internal ventilation stack is in continuous operation; the external ventilation stack is operated only during nuclear reactor outage.

	BAPP	HVB 1	HVB 1	HVB 2	HVB 2	Total
		internal stack	external	internal	external	
			stack	stack	stack	
	•	Activity, activit	y range [GB	q, MBq, kBq]		•
Noble gases [GBq]					
Total ¹⁾			5 7	00		
		>755;		>564;	>120;	>3 000;
¹³³ Xe	-	<757	1 560	<573	<122	<3 010
		>180;	>2.03;	>783;	>0.0851;	>965;
¹³⁵ Xe	-	<182	<2.90	<786	<1.38	<972
		>418;		>693;		>1 110;
⁴¹ Ar	-	<421	<1.67	<696	<2.11	<1 120
		>19.8;		>67.0;		>86.8;
⁸⁷ Kr	-	<26.2	<2.06	<76.4	<2.79	<107
		>36.0;		>179;		>215;
⁸⁸ Kr	-	<49.0	<2.89	<196	<4.06	<252
³ H [GBq]	228	500	214	842	350	2 130
¹³¹ I in total [MBa]*			>59.0:	<59.4		
Gaseous		>8.40:	,	>6.40:	>26.2:	>49.1:
form	_	<8.56	16.3	<6.45	<26.3	<57.6
¹⁴ C [GBa]	>3.64:	1.50			>0.992:	>233:
- []]	<3.65	179	>0.634	227	< 0.998	<412
Aerosols [kB	q]					
⁵¹ Cr	>256;	>14.3;	>90.7;	>102;	>1 160;	>1 620;
	<915	<159	<133	<201	<1 190	<2 600
⁵⁴ Mn	>59.6;	>2.30;	>27.4;	>6.87;	>131;	>227;
	<106	<15.4	<30.6	<17.2	<133	<301
⁵⁷ Co				>2.68;		>2.68;
	<55.5	<11.7	<3.87	<9.77	<7.48	<84.4
⁵⁸ Co	>145;	>10.9;	>13.2;	>64.3;	>680	>914;
(0)	<188	<23.7	<17.3	<74.3	<682	<985
⁶⁰ Co	>98.3;	>5.38;	>33.3;	>3.41;	>33.3;	>174;
05	<146	<21.7	<36.1	<16.4	<42.2	<262
⁹⁵ Zr	>203;	>5.40;	>218;		>166;	>593;
95	<307	<29.2	<226	<19.4	<178	<760
³³ Nb	>528;	>12.1;	>360;	>7.67;	>590;	>1 500;
1035	<570	<29.1	<363	<19.0	<591	<15/0
Ru	~75.2	<15.0	<6.17	<11.0	>3./1;	>3./1;
124 CL	3.3</td <td><15.9 >21.7:</td> <td><0.1/</td> <td><11.0 > 202:</td> <td><13.3</td> <td><122 >2.590:</td>	<15.9 >21.7:	<0.1/	<11.0 > 20 2 :	<13.3	<122 >2.590:
50	>409; <529	~21.7; 35.0	<113; <118	>802; <810	<2 180;	>3 380; <3 700
¹³⁴ Cs	.52)	>9 34.	-110	.010	2210	>96.7.
0.5	>87.4; <149	<21.8	<7.13	<16.0	<28.5	<223
¹³⁷ Cs	>73.9;	>6.97;	>4.10;			>85.3;
	<136	<21.3	<8.09	0.387; <11.6	<11.4	<174
¹³¹ I	>50.2;	>140;	>72.4;	>116;	>1 300;	>1 680;
	<180,4	<162	<78.5	<131	<1 310	<1 840

Table No. 27 Overview of activities of individual radionuclides discharged to the airfrom Temelín NPP in the year 2005 (taken from the Temelín NPP Report)

Contd. Table No. 27 Overview of activities of individual radionuclides discharged to the air from Temelín NPP in the year 2005 (taken from the Temelín NPP Report)

	BAPP	HVB 1 internal stack	HVB 1 external stack	HVB 2 internal stack	HVB 2 external stack	Total		
Activity, activity range [GBq, MBq, kBq]								
Noble gases [GBq]							
⁷⁶ As	<1 480	<440	<240	<258	<421	<2 840		
⁸⁹ Sr	203	23.3	59.5	25.7	67.5	379		
⁹⁰ Sr	<21.7	<3.53	<8.06	<3.85	<7.28	<44.5		

Note:

¹⁾ Summary value of activities of BAPP + HVB1(internal stack) + HVB1(external stack) + HVB2(internal stack) + HVB2(external stack) (41Ar, 85Kr, 85mKr, 87Kr, 88Kr, 133Xe, 135Xe, 135Mze, 138Xe)

*) Summary value of BAPP + HVB1(internal stack) + HVB1(external stack) + HVB2(internal stack) + HVB2(external stack)

Table No. 28 Overview of activities of radioactive substances discharged to the
hydrosphere from Temelín NPP in the year 2005 (taken from the Temelín NPP
Report)

	Activity						
Tank designation	ORY50BO1	OTR30B02	OTR80B01	OTR80B02	OTR90B03	OTZ01B02	
³ H [GBq]	0.238	249	15 100	14 200	10.6	3.00	
Other							
radionuclides							
[MBq]							
			>0.294;				
⁵¹ Cr	<22.5	< 0.295	<86.2	<86.4	<20.2	<2.30	
	>0.0241;		>0.220;	>0.0513;		>0.379;	
⁵⁴ Mn	<2.80	< 0.0273	<10.4	<10.1	<2.44	< 0.539	
⁵⁹ Fe	<4.39	< 0.0527	<16.6	<16.4	<4.11	< 0.447	
⁵⁷ Co	<2.18	< 0.0297	<8.41	<8.37	<1.97	< 0.214	
						>0.0842;	
⁵⁸ Co	<2.41	< 0.0262	<8.96	<8.93	<2.09	< 0.292	
⁶⁰ Co	<2.75	< 0.0333	<10.0	<9.97	<2.31	< 0.287	
⁶⁵ Zn	<4.89	< 0.0636	<18.9	<18.2	<4.52	< 0.494	
	>0.266;					>0.0521;	
⁹⁵ Zr	<4.65	< 0.0511	<16.7	<16.3	<3.92	< 0.484	
	>0.230;		>0.642;	>0.143;		>0.207;	
⁹⁵ Nb	<3.27	< 0.0299	<11.4	<11.1	<2.74	< 0.451	
				>0.0826;			
¹⁰³ Ru	<2.56	< 0.0326	<9.68	<9.61	<2.28	< 0.272	
						>0.0382;	
^{110m} Ag	<3.17	< 0.0340	<11.6	<11.6	<2.74	< 0.402	
	>0.154;		>0.335;			>0.758;	
¹²⁴ Sb	<3.55	< 0.0483	<13.2	<13.4	<2.87	<1.14	
	> 0.822;		>2.59;	>8.59;	>0.302;	>1.26;	
¹³⁴ Cs	<4.17	< 0.0454	<15.1	<21.3	<3.27	<1.45	
107	>1.04;		>4.08;	>10.3;	>0.312;	>1.16;	
¹³⁷ Cs	<3.95	< 0.0478	<14.8	20.1	<3.02	<1.35	
¹⁴¹ Ce	<3.91	< 0.0494	<15.3	<15.2	<3.58	< 0.388	

Contd. Table No. 28 Overview of activities of radioactive substances discharged to the hydrosphere from Temelín NPP in the year 2005 (taken from the Temelín NPP Report)

Activity						
Tank designation	OTZ02B02	OUG01BO01	OUG01BO02	OUG02BO01	OUG02BO02	Total
						>0.0477;
¹³¹ I [MBq]	<2.88	< 0.0362	>1.15; <11.5	>1.78; <12.0	<2.56	< 0.335
³ H [GBq]	94.9	5.39	3.81	0.191	0.158	29 600
Other						
radionuclides						
[MBq]						
51		>0.948;				>1.24;
⁵¹ Cr	<3.26	<18.3	<16.8	<2.68	<2.72	<262
54	>0.453;		>13.9;	>0.660;	>0.591;	>26.5;
⁵⁴ Mn	< 0.659	10.2	<14.0	< 0.761	< 0.719	<52.7
⁵⁹ Fe	< 0.589	<2.97	<2.89	< 0.506	< 0.473	<49.5
⁵⁷ Co	< 0.296	<1.52	<1.45	< 0.255	< 0.246	<24.9
	>0.0249;	>5.85;	>2.43;	>0.0517;	>0.930;	>9.37;
⁵⁸ Co	< 0.353	< 6.51	<3.22	< 0.320	<1.18	<34.3
		>5.04;	>6.06;	>0.457;	>0.236;	>11.8;
⁶⁰ Co	< 0.390	< 6.02	<6.61	< 0.718	< 0.559	<39.6
⁶⁵ Zn	< 0.668	<3.29	<3.22	< 0.579	< 0.541	<55.4
		>4.64;	>11.9;	>0.380;	>0.181;	>17.4;
⁹⁵ Zr	< 0.597	<7.25	<13.8	< 0.836	< 0.645	<65.2
	>0.0272;	>13.7;	>25.0;	>1.12;	>0.498;	>41.5;
⁹⁵ Nb	< 0.436	<14.2	<25.4	<1.29	< 0.732	<71.0
						> 0.0826;
103 Ru	< 0.378	<2.13	<2.08	< 0.318	< 0.328	<29.7
		>4.70;	>6.50;	>0.812;	>0.129;	>12.2;
^{110m} Ag	< 0.537	<6.72	<7.96	<1.13	< 0.556	<46.5
	>2.26;	>35.7;	>30.8;	>1.07;	>0.444;	>71.5;
¹²⁴ Sb	<2.81	<36.5	<31.0	<1.51	< 0.976	<107
	>3.76;		>37.5;	>1.76;	>4.71;	>109;
¹³⁴ Cs	<3.95	47.3	<37.6	<1.88	<4.87	<141
107	>3.76;			>1.90;	>3.92;	>102;
¹³⁷ Cs	<3.91	41.3	33.9	<2.01	<4.04	<128
¹⁴¹ Ce	< 0.536	<2.70	<2.55	< 0.453	< 0.438	<45.1
	>0.0556;	>6.02;	>5.94;	>0.106;	>0.400;	>15.5;
¹³¹ I	< 0.471	<7.31	<7.39	< 0.402	< 0.663	<45.6

Table No. 29 Activity concentrations of noble gases and ¹⁴C from the samples taken
from ÚJV Řež nuclear reactor ventilation stack in the year 2005 (sampling and
measuring by the SÚRO in Prague)

Date	e of sampling	8.12.2005
Nuclide	Half life	[B q/m ³]
⁴¹ Ar	1.82 h	430 000
⁸⁵ Kr	10.7 y	3.2
^{85m} Kr	4.48 h	300
⁸⁷ Kr	1.27 h	1 300
⁸⁸ Kr	2.86 h	350
¹³³ Xe	5.25 d	150
^{133m} Xe	2.19 d	< 20
¹³⁵ Xe	9.10 h	780
¹⁴ C (combustible forms)	5730 y	2.1
$^{14}C(CO_2)$		8.5

Sign "<" indicates the minimum significant activity for reliability level 95%.

The value is arithmetic mean of activity concentrations determined from measurement of 2 samples.

Table No. 30a Dukovany NPP vicinity in the year 2005 (taken from the Dukovany NPP Report)

Activity concentration, surface and mass of selected radionuclides in aerosols [Bq/m3], in monthly fallouts [Bq/m2] and in environmental components [Bq/kg,l] - sampling and measuring by the LRKO.

Component	Mean value	95% tolerance interval	Number of measurements	Of which >MDA
¹³⁷ Cs				
Aerosols	-	<3.0E-06*)	52	0
Total fallouts ^{&)}	-	<4.0E-01*)	12	0
Soil	2.6E+01	2.7E-01 - 8.1E+02	8	8
Surface water	-	<1.4E-02*)	16	0
Drinking water	-	<1.4E-02*)	7	0
Underground water	-	<1.4E-02*)	12	0
Milk	-	<4.0E-02*)	36	0
Cereals ^{a)}	-	<8.0E-02*)	2	0
Apples ^{&)}	-	<8.0E-02*)	1	0
Cabbage ^{&)}	-	<8.0E-02*)	1	0
Potatoes ^{&)}	-	<8.0E-02*)	1	0

Contd. Table No. 30a Dukovany NPP vicinity in the year 2005 (taken from the Dukovany NPP Report)

Activity concentration, surface and mass of selected radionuclides in aerosols [Bq/m3], in monthly fallouts [Bq/m2] and in environmental components [Bq/kg,l] - sampling and measuring by the LRKO.

Component	Mean value	95% tolerance interval	Number of measurements	Of which >MDA
¹³⁷ Cs				
Feedstuff ^{a)}	-	<8.0E-02*)	3	0
Waste channel sediments	-	<2.0E+00	1	0
Other sediments	-	5.5E+00 - 1.1E+01*)	2	2
⁹⁰ Sr				
Surface water	-	<8.0E-03*)	10	0
Milk	-	2.1E-02 - 2.9E-02*)	3	3
Apples ^{&)}	-	<3.0E-02*)	1	0
Cabbage ^{&)}	-	7.0E-02*)	1	1
Potatoes ^{&)}	-	6.0E-02*)	1	0
Cereals ^{a)}	-	5.0E-02 - 2.2E-01*)	2	2
Feedstuff ^{a)}	-	1.0E-01 - 2.2E-01*)	3	3
³ H				
Surface water ¹⁾	4.6E+01	1.4E+01 - 1.3E+02	36	36
Surface water ²⁾	-	<1.0E+01*)	20	0
Underground water, drill holes – vicinity of Dukovany NPP	-	<1.0E+01 - 5.8E+01*)	72	4
Underground water, wells – Dukovany NPP premises	3.2E+02	8.1E+00 - 2.4E+03	126	126
Underground water, drill holes – Dukovany NPP premises	7.2E+00	8.1E-02 - 7.0E+01	158	26
Drinking water	2.5E+01	1.1E+00 - 2.4E+02	16	11

Note:

*) With regard to data file properties, the range of values is used as data file characteristics.

&) Composite sample

a) Commodity includes indicated number of composite samples.

1) Surface water affected by effluents from NPP.

2) Surface water not affected by effluents from NPP.

MDA indicates minimum detectable activity.

Table No. 30bTemelín NPP vicinity in the year 2005 (taken from the Temelín NPP Report)

Activity concentration, surface and mass of selected radionuclides in aerosols [Bq/m3], in monthly fallouts [Bq/m2] and in environmental components [Bq/kg,l] - sampling and measuring by the LRKO.

Component	Mean value	95% tolerance interval	Number of measurements	Of which >MDA
¹³⁷ Cs				
Aerosols	-	< 9.0E-07 - 1.4E-06	52	4
Fallouts	-	<1.2E-01*)	12	0
Soil	3.5E+01	5.1E+00 - 1.9E+02	8	8
Surface water	-	<1.3E-02*)	40	1
Drinking water	-	<1.3E-02*)	8	0
Underground water		<1.3E-02*)	15	0
Milk	-	<1.3E-01	26	0
Cereals ^{&)}	-	<1.7E-01*)	2	0
Apples	<1.7E-01	-	1	0
Forest fruits	2.8E+00	-	1	1
Fish	-	1.1E-01 - 4.9E+00*)	3	3
Feedstuff ^{&)}	-	2.0E+00 - 3.4E+00	2	2
Waste channel sediments ³⁾	-	1.1E+01 - 2.9E+01*)	2	2
Other sediments	4.2E+00	-	1	1
⁹⁰ Sr				
Surface water	-	<6.6E-02*)	3	0
Milk	-	<1.9E-01*)	12	0
³ H				
Surface water ¹⁾	-	<2.8E+00 - 9.7E+01*)	40	20
Surface water ²⁾	-	<8.2E+00*)	12	0
Underground water, monitoring drill holes – vicinity of Temelín NPP	-	<8.1E+00*)	22	1
Underground water, wells – vicinity of Temelín NPP	-	<8.1E+00*)	6	0
Underground water, monitor. drill holes – Temelín NPP premises	-	<8.1E+00*)	12	0
Underground water, drainage wells - Temelín NPP premises	-	<8.5E+00*)	36	6
Drinking water	-	<8.5E+00*	30	1

Note:

&) Related to dry matter.

1) Surface water affected by effluents from NPP.

2) Surface water not affected by effluents from NPP.

3) Sediment samplings are performed at sampling points of river basin app. 2 km and 35 km below WCH outlet.

*) With regard to data file properties, the range of values is used as data file characteristics.

MDA indicates minimum detectable activity for reliability level 95%.

Table No. 31Dukovany NPP and Temelín NPP vicinity in the year 2005 (measuring by
the LRKO)

Component	Mean value	95 % tolerance interval	Number of measurements	Of which >MDA
Dukovany NPP				
vicinity	2.1E+02	1.5E+01 - 2.0E+03	7	6
Temelín NPP vicinity	8.5E+02	1.7E+02 - 3.2E+03	24	20

Results of the measurement of activity surface of 137Cs using field semiconductor spectrometry [Bq/m2]

Note:

MDA indicates minimum detectable activity for reliability level 95%.

Table No. 32a Dukovany NPP vicinity in the year 2005 (sampling by the RC SÚJB inBrno, measuring by the RC SÚJB in Brno and České Budějovice)

Activity concentration, surface and mass of selected radionuclides in monthly fallouts [Bq/m2] and in environmental components [Bq/kg,l].

Component	Mean value	95% tolerance interval	Number of measurements	Of which >MVA
¹³⁷ Cs				
Total fallouts	-	1.0E+00 - 3.1E+00*)	20	5
Milk	-	<6.8E-02*)	15	0
Fresh fodder	-	<1.5E-01*)	5	2
Silage and fodder grass	-	<4.2E-02 - 7.5E-01*)	7	3
Cereals	-	<8.4E-02*)	6	0
Corn	-	<6.4E-02	1	0
Fruits	-	<1.7E-02*)	3	0
Forest fruits	-	<3.0E-02*)	3	0
Mushrooms	-	2.8E+01 - 3.2E+01*)	2	2
³ H				
Surface water ¹⁾	1.1E+02	2.4E+00 - 8.8E+02	82	82
Surface water ²⁾	-	<1.5E+00*)	25	0
Drinking water ¹⁾	9.4E+00	7.3E+00 - 1.2E+01	4	4
Drinking water ²⁾		<1.50E+00*)	4	0

Note:

1) Water affected by effluents from NPP.

2) Water not affected by effluents from NPP.

*) With regard to data file properties, the range of values is used as data file characteristics.

MVA indicates the minimum significant activity for reliability level 95%.

Table No. 32bTemelín NPP vicinity in the year 2005 (sampling and measuring by
the RC SÚJB in České Budějovice)

Activity concentration, surface and mass of selected radionuclides in monthly fallouts [Bq/m2] and in environmental components [Bq/kg,l].

Component	Mean value	95% tolerance interval	Number of measurements	Of which >MVA
¹³⁷ Cs				
Total fallouts	-	6.7E-02 - 2.8E-01*)	18	4
Milk	-	<5.7E-02*)	5	0
Potatoes	4.1E-02	-	1	1
Corn	<8.2E-02	-	1	0
Feedstuff	<5.6E-02	-	1	0
Fodder	-	3.9E-01 - 1.6E+00*)	2	2
Silage and fodder		5.9E-02 - 4.3E-01*)	4	4
grass	-			
Fruits	-	<7.0E-02*	7	0
Forest fruits	-	<4.8E-02 - 1.4E+01*)	3	1
Mushrooms	-	4.2E-01 - 2.6E+02*)	18	18
³ H				
Surface water ¹⁾		<1.0E+00 - 1.2E+04*)	60	34
Surface water ²⁾	-	<1.5E+00*)	28	0
Underground water		<1.5E+00*)	9	0

Note:

1) Water affected by effluents from NPP.

2) Water not affected by effluents from NPP.

*) With regard to data file properties, the range of values is used as data file characteristics.

MVA indicates the minimum significant activity for reliability level 95%.

ANNEX NO. 2

Figure No.1	Early Warning System (SVZ) within Radiation Monitoring Network in the
D : M O	Czech Republic
Figure No.2a	SVZ Hradec Králové 2005 (measuring point at RC SUJB)
Figure No.2b	SVZ Dukovany 2005 (measuring point at CHMU observatory)
Figure No.2c	SVZ Temelín 2005 (measuring point at CHMU observatory)
Figure No.2d	SVZ Churáňov 2005 (measuring point at ČHMÚ observatory)
Figure No.2e	TDS Dukovany NPP 2005 (measuring point No. 13)
Figure No.2f	TDS Temelín NPP 2005 (measuring point No. 13)
Figure No.3	Territorial and local TLD network
Figure No.4	Measuring of dose equivalent rate in travelling measurements within INEX 3 exercises
Figure No.5	Measuring of dose equivalent rates in TLD distribution in the fourth quarter 2005
Figure No.6	Air monitoring results within Náměšť nad Oslavou – Moravský Krumlov area (photon dose equivalent rate at 1 m above ground)
Figure No.7	Location distribution for atmospheric aerosol sampling within RMS ČR
Figure No.8a	Activity concentration of 137 Cs in aerosol in the air in the year 2005 – MMKO SÚRO in Prague (sampling and measuring by SÚRO in Prague)
Figure No.8b	Activity concentration of 137 Cs in aerosol in the air in the year 2005 – MMKO in Ústí nad Labem (sampling and measuring by RC in Ústí nad Labem)
Figure No.8c	Activity concentration of ¹³⁷ Cs in aerosol in the air in the year 2005 – MMKO in Hradec Králové (sampling and measuring by RC in Hradec Králové)
Figure No.8d	Activity concentration of 137 Cs in aerosol in the air in the year 2005 – MMKO in Ostraya (sampling and measuring by SÚBO in Ostraya)
Figure No.8e	Activity concentration of ¹³⁷ Cs in aerosol in the air in the year 2005 – MMKO in České Budějovice (sampling and measuring by RC in České Budějovice)
Figure No.8f	Activity concentration of 137 Cs in aerosol in the air in the year 2005 – MMKO in Plzeň (sampling and measuring by RC in Plzeň)
Figure No.8g	Activity concentration of ¹³⁷ Cs in aerosol in the air in the year 2005 – MMKO in Brno (sampling by RC in Brno, measuring by RC in České Budějovice)
Figure No.8h	Activity concentration of ¹³⁷ Cs in aerosol in the air in the year 2005 – MMKO in Kamenná (sampling by RC in Kamenná, measuring by SÚUCHPO)
Figure No.8i	Activity concentration of 137 Cs in aerosol in the air in the year 2005 – MMKO in Holešov (sampling by MŽP – ČHMÚ in Holešov, measuring by
Figure No.8j	RC in Ostrava) Activity concentration of ¹³⁷ Cs in aerosol in the air in the year 2005 – MMKO in Cheb (sampling by MŽP – ČHMÚ in Cheb, measuring by SÚRO
Figure No.9	In Prague) Activity concentration of selected radionuclides in air aerosol, monthly mean values – MMKO SÚRO in Prague (sampling and measuring by SÚRO in Prague)
Figure No.10a	Activity concentration of 85 Kr in the air – MMKO in Prague

Activity concentration of ${}^{14}C$ in the air in the form of CO_2 – MMKO in Figure No.10b Prague Figure No.11a ¹³⁷Cs in fallouts in the year 2005 – MMKO in Prague, fallout captured on water surface (sampling and measuring by SÚRO in Prague) Figure No.11b ¹³⁷Cs in fallouts in the year 2005 – MMKO in Ústí nad Labem (sampling and measuring by RC in Ústí nad Labem) ¹³⁷Cs in fallouts in the year 2005 – MMKO in Hradec Králové (sampling and Figure No.11c measuring by RC in Hradec Králové) ¹³⁷Cs in fallouts in the year 2005 – MMKO in Ostrava (sampling and Figure No.11d measuring by SÚRO in Ostrava) ¹³⁷Cs in fallouts in the year 2005 – MMKO in České Budějovice (sampling Figure No.11e and measuring by RC in České Budějovice) Figure No.11f ¹³⁷Cs in fallouts in the year 2005 – MMKO in Plzeň (sampling and measuring by RC in Plzeň) ¹³⁷Cs in fallouts in the year 2005 – MMKO in Brno (sampling by RC in Figure No.11g Brno, measuring by RC in České Budějovice) ¹³⁷Cs in fallouts in the year 2005 – MMKO in Kamenná (sampling by RC in Figure No.11h Kamenná, measuring by SÚJCHBO) Surface activity of selected radionuclides in fallouts - MMKO SÚRO in Figure No.12a Prague (sampling and measuring by SÚRO in Prague) Activity concentration of ³H in precipitation (sampling and measuring by Figure No.12b SÚRO in Prague) Activity concentration of ³H in streams in the year 2005 – location selection Figure No.13a Activity concentration of 3 H in water in the year 205 – location selection Figure No.13b Activity concentration of ³H in water in the year 2005 - Bohumín (Odra) Annual mean values of ¹³⁷Cs activity mass in pork and beef and activity Figure No.13c Figure No.14 concentration in milk from the year 1986 (sampling and measuring until 2003 – SÚJB RC and SÚRO; sampling and measuring from 2004 – RC SÚJB, SÚRO and SVÚ) Development of ¹³⁷Cs content at Czech population after Chernobyl accident Figure No.15 Figure No.16 Total activity of ³H discharged from Dukovany NPP – comparison of values measured by SÚJB and LRKO (sampling by Dukovany NPP, measuring by RC in Brno and LRKO Dukovany NPP) Figure No.17 Total activity of ³H in discharge channel Dukovany NPP – comparison of values measured by SÚJB and LRKO (sampling by Dukovany NPP, measuring by RC in Brno and LRKO Dukovany NPP) Figure No.18 Total activity of ³H discharged from Temelín NPP – comparison of values measured by SÚJB and LRKO (sampling by Temelín NPP, measuring by RC in Brno and LRKO Temelín NPP) Figure No.19 Activity concentration of ³H in discharge channel Temelín NPP – comparison of values measured by SÚJB and LRKO (sampling by Temelín NPP, measuring by RC in Brno and LRKO Temelín NPP) Gaseous effluent balance – noble gases (⁴¹Ar) from sampling in nuclear Figure No.20a reactor ventilation stack at the Nuclear Research Institute Řež in the period 1993 - 2005 Gaseous effluent balance - ¹³¹I from sampling in nuclear reactor ventilation Figure No.20b stack at the Nuclear Research Institute Řež in the period 1993 – 2005 Figure No.20c Liquid effluent balance from sampling in purifying station at the Nuclear Research Institute Řež in the period 1993 – 2005

- Figure No.21a ¹³⁷Cs in air aerosol in the year 2005 in the vicinity and on the premises of Dukovany NPP (sampling and measuring by LRKO Dukovany NPP)
- Figure No.21b ¹³⁷Cs in air aerosol in the year 2005 in the vicinity of Temelín NPP (sampling and measuring by LRKO Temelín NPP)
- Figure No.21c ¹³⁷Cs in air aerosol in the year 2005 on the premises of Temelín NPP (sampling and measuring by LRKO Temelín NPP)
- Figure No.22 Activity concentration of ³H in Jihlava river profile Mohelno and Vltava river profile Újezd (sampling RC in Brno and České Budějovice, measuring by RC in Brno)
- Figure No.23 Surface activity of ¹³⁷Cs in fallouts in the vicinity of Dukovany NPP (sampling by RC in Brno, measuring by RC in České Budějovice)
- Figure No.24 Surface activity of ¹³⁷Cs in fallouts in the vicinity of Temelín NPP quarterly values in individual locations (sampling and measuring by RC in České Budějovice)

Figure No. 1 Early Warning System (SVZ) within Radiation Monitoring Network in the Czech Republic

Figure No.2a SVZ Hradec Králové 2005 (measuring point at RC SÚJB)

Figure No.2b SVZ Dukovany 2005 (measuring point at ČHMÚ observatory)

Figure No.2c SVZ Temelín 2005 (measuring point at ČHMÚ observatory)

Figure No.2d SVZ Churáňov 2005 (measuring point at ČHMÚ observatory)

Figure No.2e TDS Dukovany NPP 2005 (measuring point No.13)

Figure No.2f TDS Temelín NPP 2005 (measuring point No. 13)

Figure No.3 Territorial and local TLD network

Figure No.4 Measuring of dose equivalent rate in travelling measurements within INEX 3 exercises

Figure No.5 Measuring of dose equivalent rates in TLD distribution in the fourth quarter 2005

Figure No.6 Air monitoring results within Náměšť nad Oslavou – Moravský Krumlov area (photon dose equivalent rate at 1 m above ground)

Figure No.7 Location distribution for atmospheric aerosol sampling within RMS ČR

Figure No.8b Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in Ústí nad Labem (sampling and measuring by RC in Ústí nad Labem)

Figure No.8c Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in Hradec Králové (sampling and measuring by RC in Hradec Králové)

Figure No.8d Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in Ostrava (sampling and measuring by SÚRO in Ostrava)

Note: Higher values of ¹³⁷Cs activity in 5th and 7th week fall inside the limits of values detected in previous years and relate to increased contamination in the region of North Moravia after Chernobyl accident.

Figure No.8e Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in České Budějovice (sampling and measuring by RC in České Budějovice)

Figure No.8f Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in Plzeň (sampling and measuring by RC in Plzeň)

Figure No.8g Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in Brno (sampling by RC in Brno, measuring by RC in České Budějovice)

Figure No.8h Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in Kamenná (sampling by RC in Kamenná, measuring by SÚJCHBO)

Figure No.8i Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in Holešov (sampling by MŽP – ČHMÚ in Holešov, measuring by RC in Ostrava)

Figure No.8j Activity concentration of ¹³⁷Cs in aerosol in the air in the year 2005 – MMKO in Cheb (sampling by MŽP – ČHMÚ in Cheb, measuring by SÚRO in Prague)

Figure No.9 Activity concentration of selected radionuclides in air aerosol, monthly mean values – MMKO SÚRO in Prague (sampling and measuring by SÚRO in Prague)

Figure No.10a Activity concentration of ⁸⁵Kr in the air – MMKO in Prague

Figure No.10b Activity concentration of ¹⁴C in the air in the form of CO₂ – MMKO in Prague

Figure No.11a ¹³⁷Cs in fallouts in the year 2005 – MMKO in Prague, fallout captured on water surface (sampling and measuring by SÚRO in Prague)

Figure No.11b ¹³⁷Cs in fallouts in the year 2005 – MMKO in Ústí nad Labem (sampling and measuring by RC in Ústí nad Labem)

Figure No.11c ¹³⁷Cs in fallouts in the year 2005 – MMKO in Hradec Králové (sampling and measuring by RC in Hradec Králové)

Figure No.11d ¹³⁷Cs in fallouts in the year 2005 – MMKO in Ostrava (sampling and measuring by SÚRO in Ostrava)

Figure No.11e ¹³⁷Cs in fallouts in the year 2005 – MMKO in České Budějovice (sampling and measuring by RC in České Budějovice)

Figure No.11f ¹³⁷Cs in fallouts in the year 2005 – MMKO in Plzeň (sampling and measuring by RC in Plzeň)

Figure No.11g ¹³⁷Cs in fallouts in the year 2005 – MMKO in Brno (sampling by RC in Brno, measuring by RC in České Budějovice)

Figure No.11h ¹³⁷Cs in fallouts in the year 2005 – MMKO in Kamenná (sampling by RC in Kamenná, measuring by SÚJCHBO)

Figure No.12a Surface activity of selected radionuclides in fallouts – MMKO SÚRO in Prague (sampling and measuring by SÚRO in Prague)

Figure No.12b Activity concentration of ³H in precipitation (sampling and measuring by SÚRO in Prague)

Figure No.13a Activity concentration of ³H in streams in the year 2005 – location selection

Figure No.13b Activity concentration of ³H in water in the year 205 – location selection

Figure No.13c Activity concentration of ³H in water in the year 2005 – Bohumín (Odra)

Figure No.14 Annual mean values of ¹³⁷Cs activity mass in pork and beef and activity concentration in milk from the year 1986 (sampling and measuring until 2003 – SÚJB RC and SÚRO; sampling and measuring from 2004 – RC SÚJB, SÚRO and SVÚ)

Figure No.15 Development of ¹³⁷Cs content at Czech population after Chernobyl accident

Figure No.16 Total activity of ³H discharged from Dukovany NPP – comparison of values measured by SÚJB and LRKO (sampling by Dukovany NPP, measuring by RC in Brno and LRKO Dukovany NPP)

Figure No.17 Total activity of ³H in discharge channel Dukovany NPP – comparison of values measured by SÚJB and LRKO (sampling by Dukovany NPP, measuring by RC in Brno and LRKO Dukovany NPP)

Figure No.18 Total activity of ³H discharged from Temelín NPP – comparison of values measured by SÚJB and LRKO (sampling by Temelín NPP, measuring by RC in Brno and LRKO Temelín NPP)

Figure No.19 Activity concentration of ³H in discharge channel Temelín NPP – comparison of values measured by SÚJB and LRKO (sampling by Temelín NPP, measuring by RC in Brno and LRKO Temelín NPP)

(Total annual activity limit is 1 000 [TBq])

Figure No.20b Gaseous effluent balance – ¹³¹I from sampling in nuclear reactor ventilation stack at the Nuclear Research Institute Řež in the period 1993 – 2005

(Total annual activity limit is 20 000 [MBq])

Figure No.20c Liquid effluent balance from sampling in purifying station at the Nuclear Research Institute Řež in the period 1993 – 2005 Total beta activity converted into reference radionuclide 137Cs (Total annual activity limit is 2 200 [MBq])

Figure No.21a ¹³⁷Cs in air aerosol in the year 2005 in the vicinity and on the premises of Dukovany NPP (sampling and measuring by LRKO Dukovany NPP)

Figure No.21b ¹³⁷Cs in air aerosol in the year 2005 in the vicinity of Temelín NPP (sampling and measuring by LRKO Temelín NPP)

Figure No.21c ¹³⁷Cs in air aerosol in the year 2005 on the premises of Temelín NPP (sampling and measuring by LRKO Temelín NPP)

Figure No.22 Activity concentration of ³H in Jihlava river – profile Mohelno and Vltava river – profile Újezd (sampling RC in Brno and České Budějovice, measuring by RC in Brno)

Figure No.23 Surface activity of ¹³⁷Cs in fallouts in the vicinity of Dukovany NPP (sampling by RC in Brno, measuring by RC in České Budějovice)

Figure No.24 Surface activity of ¹³⁷Cs in fallouts in the vicinity of Temelín NPP – quarterly values in individual locations (sampling and measuring by RC in České Budějovice)

