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DNA mutations and cancer

* Any mutation in a somatic cell (and particularly
stem cells) can be step #1 toward cancer cell

* At least two mutations are needed to generate
neoplastic phenotype and often more are needed.



Native DNA replication machinery is error prone

Table 1. Model parameters. These parameters were used for the algebraic
model to see how colorectal cancer incidence scales with body size.
Parameter values were taken from [7]. The mutation rate assumes that
there are three genes (1 kb each) per pathway and a background mutation
rate of 10~° mutations per base pair per cell division.

parameter value definition

u 3Ix107° mutations/oncogenic

pathway/cell division

d age(days)/4 divisions since birth
(rate = 1 div./4 days)
k 6 rate liming mutations

required for cancer
N 8 effective stem cells per

arypt
m (15 x 107°-15 x 10") arypts per colon

F, Graham TA, Wang L-
rCC. 2015 Solutions to
aradox revealed by
1atical modelling and
)ecies cancer gene

. Phil. Trans. R. Soc. B
.40222.



Native DNA replication machinery is error prone — evidence from increased numbers
of new mutationsin children as parents as they age

a b

60 - 60 -
40 -
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20 - 20 -

Number of de novo mutations from father
Number of de novo mutations from mother

20 25 30 35 40 45 20 25 30 35 40 45
Age of the father Age of the mother

Figure 3 | Scatter plots with linear regression line on parental ages and their respective number of de novo mutations in the 61 trios with lllumina
sequencing data. (a) The number of DNMs of paternal origin is plotted against the father’s age (in years). The blue line shows the linear fit (estimate of the
slope =0.31, P=5.15 x 10 ~ %) and the grey band represents the 95% confidence interval. (b) The number of DNMs of maternal origin is plotted against
the mother's age (in years), the blue line shows the linear fit (estimate of slope =0.12, P=0.02), and the grey band represents the 95% confidence
interval.

Wendy S. W. Wong, Benjamin D. Solomon, Dale L. Bodian, Prachi Kothiyal, Greg Eley, Kathi C. Huddleston, Robin
Baker,Dzung C. Thach, Ramaswamy K. lyer, Joseph G. Vockley & John E. Niederhuber - Wong, W. S. W. et al. New
observations on maternal age effect on germline de novo mutations. Nat. Commun. (2016).



Native DNA replication machinery is error prone —
many cancers are spontaneous (at least initially)

(a) (b)
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Figure 1. Estimated risk of colorectal cancer relative to body size under an algebraic and Wright—Fisher model. In the algebraic model (a) [7], cell lineages
accumulate mutations over time, which are passed on to their daughter cell in the next generation and there is no cell death. In the Wright—Fisher model
(b) [6], cells gain mutations over time, but each lineage has a chance of dying and being eliminated from the population. In both models, cancer occurs
when a cell acumulates k mutations. The single light blue cell represents the zygote to show that all cells came from a single initial lineage. The probability
was calculated using the algebraic and Wright - Fisher models with the parameters listed in table 1 [7] (c). Blue/green dots for mouse, human and whale indicate
the estimated risk of colon cancer occurring within 90 years of life given the approximate number of cells in a human colon, 1000 times fewer cells to represent the
mouse, and 1000 times more cells to represent the whale. The red dot indicates the lifetime risk of colon cancer according to the American Cancer Society which is
about 5.3% for men and women averaged together [12]. The estimated age incidences of cancer for whale and human, given the algebraic model, are shown in (d)
and (e), respectively. (c—e) Adapted from [2] with permission from Elsevier.

Caulin AF, Graham TA, Wang L-
S, Maley CC. 2015 Solutions to
Peto’s paradox revealed by
mathematical modelling and
cross-species cancer gene
analysis. Phil. Trans. R. Soc. B
370:20140222.



Native DNA replication machinery AND numbers of stem cells may be inversely
correlated to enable longevity

estimated mutation rate versus no. stem cells in colon
°
&
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36 000 kg

3.2-fold
50x10-10 - change

estimated mutation rate (mutations/bp/cell division)
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Figure 2. Estimated somatic mutation rates scaling with size. Mutation rate estimates show that a 3.2-fold decrease enables an animal that is 1000x larger (and so
with 1000 more stem cells) than a human to have the same cancer risk. The mutation rates shown in the plot resulted in cancer risk predictions for the given
number of cells that best matched the estimates for human (i.e. 1.2 x 10° colonic stem cells) using the Calabrese—Shibata algebraic model [7).

Caulin AF, Graham TA, Wang L-S, Maley CC. 2015 Solutions to Peto’s paradox revealed by mathematical
modelling and cross-species cancer gene analysis. Phil. Trans. R. Soc. B370: 20140222.



Stem cells

Embryonic Stem Cells

Bleod cells

* Long-Term repopulating potential (LTRP)
* Self renewal
* Multi-lineage differentiation capacity
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- highly tumorigenic after
injection in recipient mice

(Red Fluorescence: Osteosarcoma cells were stabily
MOS 1929 labelled with Cherry-Fluorescence-Protein)
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Multistep-Model of Carcinogenesis

malignant
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FIGURE 22.11 lllustrating a typical growth curve for an animal tumor, which is best fitted by a Gompertz

function. When a tumor is composed of only a few cells, it may grow exponentially, but when it gets larger, the
growth rate slows as the supply of oxygen and nutrients are outgrown.

E. J. Halland A.J. Giaccia, “Radiobiology for the Radiologist,” 8th Edition, Lippincott Williams & Wilkins, Philadelphia, 2018. pg. 411.Fig. 22.11



DNA mutations and radiation

* lonizing radiation is one of possible sources of DNA
mutations

* lonizing radiation is considered a weak mutagen
compared to many others

* At high enough doses, radiation can induce cell
death as well



Classic Paradigm of Radiation Injury

Early (Acute) Effects

(radiation sickness)
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FIGURE 1.9 lllustration of the generally accepted sequence of events from the absorption of
radation to the expression of the various forms of biological damage. (Developed in collaboration with

Dr. Noelle Metting, U.S. Department of Energy.)
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DNA and lonizing Radiation

For Low LET
radiation, 67%
damage is indirect
action

For High LET

radiation, most (all?)

damage is direct
action

Critical distance of

Indirect IR action is

within 2nm radius
from DNA.

INDIRECT

(From Hall and Giaccia)
Figurel.8 Direct and indirect
actions of radiation.

The structure of DNA is shown
schematically. Indirect

action, a secondary electron
resulting from absorption

of an x-ray photon interacts with
the DNA to produce an

effect. Inindirectaction, the
secondary electroninteracts
with, for example,a water
molecule to produce a hydroxyl
radical (OH-), which inturn
produces the damage to the
DNA.The DNA helix hasa
diameter of about 20 A(2 nm).
Itis estimated that free radicals
producedin a cylinder

witha diameterdouble that of
the DNA helix can affect

the DNA. Indirectaction is
dominantfor sparselyionizing
radiation, such as x-rays.S,
sugar; P, phosphorus; A,
adenine; T, thymine; G, guanine;
C cytosine.
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DNA Damage Induced by high and low
LET

Low-LET radiation High-LET radiation

Simple DNA lesions Complex DNA lesions

(DSBs and non-DSBs) €==

Repaired efficiently Unrepaired/misrepaired

v

Genome stability Genomic instability

il
@ -ROS 19; - Direct lonization ® - Deltarays
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DNA
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and
Repair
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Repair of simple and complex DNA lesions induced
by low- and high-LET radiation exposure. A majority
of the DNA lesions induced by low-LET irradiation
are simple lesions and are repaired within hours of
induction via NHEJ- and HR-mediated repair
pathways, with pathway preference dependent on
cell cycle. On the other hand, a majority of the high-
LET radiation-induced DNA damages are clustered
lesions, which may impede DNA repair pathways,
causing damage to remain unrepaired for longer
periods (days to weeks). In addition to radiation-
induced ROS, unrepaired DNA lesions may also
increase the ROS levels in cells, causing further
generation of simple to complex DNA lesions.
Unrepaired/misrepaired lesions in mitochondrial or
nuclear DNA (dotted line) may also further enhance
and perpetuate ROS levels. Ultimately, the
unrepaired/ misrepaired DNA lesions may promote
genomic instability, leading to initiation of
carcinogenesis

Sridharan, D. M., Asaithamby, A., Bailey, S. M., Costes, S., Doetsch, P. W., Dynan, W., Kronenberg, A., Rithidech, K. N., Saha, J., Snijders, A. M., Werner, E.,
Wiese, C., Cucinotta, F. A.and Pluth, J. M. Understanding Cancer Development Processes after HZE-Particle Exposure: Roles of ROS, DNA Damage Repair, and

Inflammation. Radiat. Res. 183, 1-26 (2015).



RBE vs. LET
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Loeffler and Durante, Nat Rev Clin Oncol. 2013 10(7):411-24.



Cell and Tissue Damage

Neighboring cell -BYSTANDER EFFECT- Distant cell

Sridharan, D. M., Asaithamby, A., Bailey, S. M., Costes, S., Doetsch, P. W., Dynan, W., Kronenberg, A., Rithidech, K. N., Saha, J., Snijders, A. M., Werner, E.,
Wiese, C., Cucinotta, F. A.and Pluth, J. M. Understanding Cancer Development Processes after HZE-Particle Exposure: Roles of ROS, DNA Damage Repair, and
Inflammation. Radiat. Res. 183,1-26 (2015).



Schematic representation of known mechanistic links between biomarkers that define cell

fates, which promote or protect from cancer risk

BIOMARKERS TO ASSESS CANCER RISK FROM SPACE RADIATION

HIGH DOSE/ HIGH DOSE RATE EXPOSURES

LOW DOSE/ LOW DOSE RATE EXPOSURES
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Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS,
Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plantel,
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Sources of lonizing Radiation

Annual risk (Americans,
excluding radiation therapy)

% Contribution of Sources of Exposures

Intemal Space
(background) (background)
Terrestrial (5%) (5%)

Radon & thoron
(background) (37%)

(background) (3%) _

Computed tomography
(medical) (24%)

~—Industrial (<0.1%)
Occupational (<0.1%)

Interventional Consumer (2%)

fivoroscopy Conventional radiclogy/flucroscopy
(medical) (79%) (medical) (5%)

FIGURE 16.6 Percantage contribution of the various sources of exposure to the collective effective dose
{1,870.000 person-Sy) and the average 1013l effective dose per person in the US population (6.2 mSy) for 2006
Medical radiation and natural background radiation make almost equal contributions. (Data from National
Council on Radiation Protection and Measurements. kanizing Rodiation Exposure of the Poputation of the United
States. Report 160, Bethesda, MD: NCRP; 2009)

Nuclear medicine
(medical) (12%)

Hall 2012 figure 16.6

Radon, 'natural’, but preventable,
causes ~10% of all lung cancer,
accordingto BEIR VI

Medical imaging procedures
contribute almost 50% of total
exposure, which would contribute™
50K fatal cancers, however much of
this is delivered to fatally ill patients.
Occupational exposure only causes
~100 cancers per year, but this is
concentratedin a small cohort --
consisting mostly of aviation and
medical workers.



Sources of lonizing Radiation

% Contribution of Sources of Radiation Exposure

U.S. Population 2006 U.K. Population 2010

Space
(background)
Internal 5%
(background) 5
Terrestrial 5%
(background) \
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13% B
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gamma cosmic

radiation radiation

16%

0.2%
nuclear
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medzallty fallout
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(background) = 2.7 mSv
37% average UK
radiation dose
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48% radioactive
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FIGURE 15.6 Percentage contribution of the various sources of exposure to the US population (in 2006) and
the UK population (in 2010). The average annual effective dose per individual in the United States is more
than double that in the United Kingdom (6.2 mSv compared with 2.7 mSv). There is not much difference in the
contribution from natural background radiation between the two countries but the contribution from medi-
cal radiation is 7 times larger in the United States than in the United Kingdom (US data from National Council
on Radiation Protection and Measurements. lonizing Radiation Exposure of the Population of the United States.
Bethesda, MD: National Council on Radiation Protection and Measurements; 2009. Report 160; UK data from
Public Health England. 2016.)

E. J. Halland A.J. Giaccia, “Radiobiology for the Radiologist,” 8th Edition, Lippincott Williams & Wilkins, Philadelphia, 2018. pg. 211.Fig. 15.6



Exceptional acute and chronic radiation
exposures




Acute radiation effects at high doses are separated into distinct syndromes

FIGURE 9.2 Showing the result of an exper- 7.5 Gy TBI to nonhuman primates
iment in which nonhuman primates were

given the granulocyte colony-stimulating
factor (G-CSF, filgrastim [Neupogen])

24 hours after a total-body irradiation (TBI)

of 7.5 Gy. Eighty percent of the animals
survived compared with 40% in controls

that did not receive the G-CSF. In other
experiments (results not shown), the agent
proved to be ineffective if administration

was delayed to 48 hours postirradiation.
(Adapted from Farese AM, Cohen MV, Katz BP,
et al. Filgrastim improves survival in lethally 0.2 —
irradiated nonhuman primates. Radiat Res. G-CSF started after 24 h
2013;179:89-100; and Farese AM, Brown CR,
Smith CP, et al. The ability of filgrastim to mit- 0.0 —
igate mortality following LDss total-body | | I T I
irradiation is administration time-dependent. 0 10 20 30 40 50 60
Health Phys. 2014;106[1]:39-47.)
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E. J. Halland A. J. Giaccia, “Radiobiology for the Radiologist,” 8th Edition, Lippincott Williams & Wilkins, Philadelphia, 2018. pg. 130, Fig9.2



Post radiation events include different types of cancer— numbers of stem
cells affected are important when cancer type is to be considered

FIGURE 10.17 Relative risk of leuke- -

; ; : ; Entire range
mia, excluding chronic lymphocytic leu- — <300 mGy
kemia, associated with 2-year lagged 2] <100 mGy
cumulative red bone marrow dose. The
lines are the fitted linear dose—response
model for different dose ranges,
whereas the shaded areas represent
the 90% Cls. (Adapted from Leuraud K,
Richardson DB, Cardis E, et al. lonising
radiation and risk of death from leukae-
mia and lymphoma in radiation-mon- 0.5—
itored workers [INWORKS]: an interna-
tional cohort study. Lancet Haematol.
2015;2:e276-e281.)

Leukemia

Relative risk

0
| | | |
0 100 200 300 400 500

Red bone marrow dose (mGy)

E. J.Halland A.J. Giaccia, “Radiobiology for the Radiologist,” 8th Edition, Lippincott Williams & Wilkins, Philadelphia, 2018. pg. 154 Fig. 10.17



FIGURE 13.2 Clinical appearance of a typical radiation cataract in the posterior scapular region in an interven-
tional cardiologist with 22 years of occupational radiation exposure. A: Retroillumination image (i.e., using the
light that is reflected by the retina back through the lens). B: Conventional slit lamp imaging (i.e., where an opti-
cal section of the lens is directly visualized). In both cases, the position of the opacity is indicated by an arrow.
(Courtesy of Dr. Norman Kleiman.)

E. J. Halland A. J. Giaccia, “Radiobiology for the Radiologist,” 8th Edition, Lippincott Williams & Wilkins, Philadelphia, 2018. pg. 192.Fig. 13.2



Radiation uses in therapy

* High doses — low volume of tissue



Radiation and dual checkpoint blockade activate non-redundant
immune mechanisms in cancer

RT Anti-CTLA4 Resistance Anti-PD-L1

¥ PD-L1 ¥ PD-1 Melanoma

Ar=eines ¢ 1) T Exhaustion
YTCR . GzmB T Repertoire Diversity .
4 coer,, $ cosr,

Reinvigoration
4 coerr,,
Oligo-Clonal Expansion

Model for non-redundant mechanisms and resistanceto RT and immune checkpoint
blockade.

Twyman-Saint Victor et al., Nature. 2015 Apr 16;520(7547):373-7.




Radiation and immunotherapyagainst cancer are not often mentioned from the

immune system perspectiye

Immunogenic cell
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Anticancer immunotherapy.
Several anticancer
immunotherapeutics have been
developed during the last three
decades,

including tumor-targeting and
immunomodulatory monoclonal
antibodies (mAbs); dendritic cell
(DC)-, peptide- and DNA-based
anticancer

vaccines; oncolytic viruses;
pattern recognition receptor
(PRR) agonists;
immunostimulatory cytokines;
immunogenic cell deathinducers;
inhibitors of immunosuppressive
metabolism; and adoptive cell
transfer. 1MT, 1-
methyltryptophan; APC, antigen-
presenting cell; IDO,
indoleamine 2,3-dioxigenase; IFN,
interferon; IL, interleukin; IMiD,
immunomodulatory drug; NLR,
NOD-like receptor; TLR, Toll-like
receptor.

Galluzzi et al., Classification of current anticancerimmunotherapies. Oncotarget. 2014

Dec 30;5(24):12472-508.



Combinations of immunotherapy and
radiation in cancer therapy

lonizing radiation induces immunogenic cell death of
tumors, which facilitates cross-priming of CTLs.
HMGB1 lonizingradiationinduces translocation of calreticulin
ATP (CRT) to the tumor cell membrane, which acts as an
DAMPs “eat me” signal to dendriticcells (DCs), facilitating
receptor mediated endocytosis through CD91. This
makes tumor antigens available for cross-presentation
on MHC-I for priming of tumor-specificT-cells.
Radiotherapyalso induces the release of danger
associated molecular patterns (DAMPs), such as ATP
and HMGB-1, which are endogenousimmune
adjuvants that stimulate DC activation, inducing DCs
to provide co-stimulatory signals to naive T-cells,
facilitating cross-priming of CTLs. Together, these
processes constitute immunogeniccell death of
tumor cells.

Translocation of
Calreticulin (CRT)

Endocytosis of
tumor antigen

Co-Stimulation

Activated

DC
Naive . >
CDa+ Cross-Priming

Vatner RE, Cooper BT, Vanpouille-Box C, Demaria S, Formenti SC. Combinations of immunotherapy and radiation in cancer therapy. Front
Oncol. 2014 Nov 28;4:325. PMCID: PMC4246656.



LNT model ... or not

v Observations
o at high dose

Increased cancer risk

Background cancer level

Radiation dose (above background)

FIGURE 10.19 lllustrating the controversy of how to extrapolate cancer risks from high doses, for which there are
epidemiologic data, to low doses characteristic of the radiation protection scenario. Line B illustrates the linear no—
threshold hypothesis, favored by BEIR, UNSCEAR, ICRP, and NCRP. Line A assumes that risks are higher at low doses
than would be predicted from a linear extrapolation. This might, for example, be a consequence of the bystander
effect. Line C assumes that there is a threshold in dose, below which there are no deleterious biologic effects. Line
Dillustrates the hypothesis that low levels of radiation are beneficial, activating repair mechanisms that protect
against disease; this is known as hormesis.

E. J. Halland A. J. Giaccia, “Radiobiology for the Radiologist,” 8th Edition, Lippincott Williams & Wilkins, Philadelphia, 2018. pg. 155.Fig 10.19



