1. Nuclear Power Plant Dukovany

1.1 Reactor Unit Scheme with identified main components

NPP Dukovany reactor unit scheme is shown in the Fig. 1-1. Following main components are identified:

PRIMARY CIRCUIT

- 1. Reactor
- 2. Steam generator
- 3. Pressuriser
- 4. Spent-fuel storage pool
- 5. Refueling pit
- 6. Refueling machine
- 7. Main coolant pump
- 8. Pressure relief tower
- 9. HVAC system
- 10. Ventilation chimney
- 11. Main crane

SECONDARY CIRCUIT

- 12. High-pressure turbine stage
- 13. Low-pressure turbine stage
- 14. Generator
- 15. Condenser
- 16. Separator-reheater
- 17. Regenerative heaters
- 18. Feedwater tank with degasifier
- 19. Steam piping into turbine
- 20. Cooling circulation circuit piping
- 21. Insulated cables for generator power outlet
- 22. High-voltage transformer 400 kV
- 23. House transformer 6 kV
- 24. Manipulation crane

1.2 NPP technical parameters

Number of reactor units	4	Steam generator
Reactor Type	Pressurised water reactor	Steam generator
	VVER 440/213	
		Main coolant

Output parameters of one unit

Nominal thermal output	1375 MWt
Generator output	440 MWe
Net electrical output	388 MWe
Own consumption	52 MWe

Reactor technical parameters

Reactor height	23.67 m
Pressure vessel inner diameter	3.542 m
Cylindrical part wall thickness	340 mm
Thickness of pressure vessel cladding	9 mm
Empty pressure vessel weight	215.15 t
Reactor weight	395 t

Reactor core

Number of fuel assembli	es 312	2
Number of fuel elements	per assembly 126	5
Number of control assem	iblies 37	
Core height	2.5	m
Core diameter	2.88	m
Fuel enrichment	1.6/2.4/3.82*	% U 235
Core loading (UO ₂)	42	t
Fuel cycle	four years with par	tly
	transition to five ye	ears

* with profiled enrichment

Reactor cooling system

Number of cooling loops	6
Inner diameter of main	
cooling piping	500 mm
Volume of coolant	2
in primary circuit	209 m ³
Primary circuit working pressur	re 12.25 MPa
Inlet coolant temperature	approx. 267 °C
Outlet coolant temperature	approx. 297 °C
Reactor coolant flow	42 000 m ³ per hour

Steam-generator

Number per unit	6
Steam production per SG	452 t. p h.
Steam output pressure	4,61 MPa
Steam output temperature	260.0 ^o C
Steam generator weight	approx. 165 t

Steam generator body diameter	3.21 m
Steam generator body length	11.80m

Main coolant pump

Number per unit	6
Nominal power consumption	1.6 MW
Operational capacity	approx. 7000 m ³ per hour
Rotor speed	1500 r.p.m.
Pump weight	approx. 48 t

Turbine

Number of high-pressure sections	1
Number of low-pressure sections	2
Nominal rotor speed	3000 r.p.m.
Inlet steam temperature	256 °C
Inlet steam pressure	4.3 MPa

Generator

Rated power	220 MW
Output voltage	15.75 kV
Nominal frequency	50 Hz
Cooling media	hydrogen - water

Condenser

Cooling towers

Number per unit Height Diameter in top of the tower Foot diameter Wall thickness Water flow (one tower) Volume of evaporated steam from one tower

1

approx. 31 716 35 000 m³/hour titanium

2
125 m
59.49 m
87.94 m
0.6-0.15 m
approx. $10.55 \text{ m}^3/\text{s}$

max. $0.15 \text{ m}^{3/\text{s}}$

1.3 Modernization activities already carried out in Dukovany NPP

A) Activities carried out within the "Back-fitting of NPP Dukovany"

- 1. A7 Main coolant pump control algorithms modification
- 2. A8 Steam generator level measurement reliability improvement
- 3. A12 Hydrogen recombination system within hermetic zone installation
- 4. A21 High-pressure compressors replacement
- 5. A23 Addition of redundant back-up to the category one power supplies No. 4
- 6. A30 Teledosimetric system installation
- 7. A32 Grab tank on Skryje stream installation
- 8. B1 Cooling system installation for the machine halls roof steel structure
- 9. B5 Stationary fire extinguishing equipment installation for central oil system
- 10. B7 Unit electrical fire detection system upgrade
- 11. B10 Stationary halon fire extinguishing system installation for unit electrical equipment

B) Activities carried out within the "Modernization of NPP Dukovany"

1.	ZL 1702	Installation of electrical fire detection system at water pump station "Jihlava"	
2.	ZL 2180	Modernization of system for public warning during accidents	
3.	ZL 2374	Construction of interim spent fuel storage facility	
4.	ZL 3103	0.4 kV switchgears upgrade	
5.	ZL 3582	TH 10 valves control	
6.	ZL 3664	32/16/16 MVA back-up transformer installation	
7.	ZL 3701	Pressure measurement in the OG box	
8.	ZL 3704	Reconstruction of the protection actuated by "HPK break" signal.	
9.	ZL 3818	EDU surroundings teledosimetric system. RA control data transfer	
10.	ZL 3863	Fire-proof spraying of critical and important cable rooms	
11.	ZL 4290	PV KO keys modification	
12.	P590	AKOBOJE Automated Physical Protection System Optimization	
13.	P591	Freon replacement in SZCH	
14.	P598	Water treatment station modernization	
15.	P602	MCR simulator	
16.	P606	Roof flats construction for the EDU employees	
17.	S150	Condenser reconstruction	
18.	S357	Post-emergency hydrogen recombination	
19.	S439	Replacement feeding water line for the SKŘ sensors flushing system	
20.	S568	TQ sumps protection	
21.	S675	Water and Oil coolers replacement in the diesel generator I station	
22.	S765	Condensate treatment system modernization	
23.	S776	Diesel generators electrical system reconstruction	
24.	S952	Construction of intermediate floor in the PPR and SD rooms	
25.	T130	Construction of new telephone switchboard	
26.	T248	PV KO (relief valve) node reconstruction	
27.	T263	HNČ replacement	
28.	T317	Water and Oil cooler replacement for diesel generator II station	
29.	T370	Replacement of TG pumps by a sealess type	
29.	13/0	Replacement of TG pumps by a sealess type	

30.	T547	First category power supplies system No. 4 batteries replacement	
31.	T556	Control room diesel generator annunciation upgrade	
32.	T703	SHNČ section collector displacement	
33.	T764	SO continuous measurement system installation	
34.	T802	Section switchboards service inlets of selected consumers reconstruction	
35.	T982	Fire protection barriers	
36.	T983	Fire protection barriers	
37.	T984	Fire protection barriers	

2. Nuclear power plant Timelines

2.1 Reactor Unit Scheme with identified main components

NPP Temelín scheme is shown on Fig. 2-1. Following main components are identified:

- 1. Reactor
- 2. Primary circuit piping
- 3. Main coolant pump
- 4. Pressuriser
- 5. Steam generator
- 6. Polar Crane
- 7. Spent-fuel pool
- 8. Refueling machine
- 9. Hydro-accumulators
- 10. Containment
- 11. Ventilation stack
- 12. Emergency core cooling system
- 13. Diesel generator station
- 14. Machine hall
- 15. Feed-water tank
- 16. Main steam piping
- 17. High-pressure turbine stage
- 18. Low-pressure turbine stage
- 19. Generator
- 20. Exciter
- 21. Separator
- 22. Condenser
- 23. Heat exchanger
- 24. Coolant inlet and outlet
- 25. Pumping station
- 26. Cooling water pump
- 27. Cooling tower
- 28. Generator power output
- 29. Transformer
- 30. Power output
- 31. Distillate reservoirs

2.2 NPP technical parameters

Number of units	2	Steam generator body diameter	4,2 m
Reactor Type	PWR	Steam generator body length	14,5 m
	VVER 1000	Main goolant numn	
Unit naramatars		Number per unit	4
Nominal thermal output	2000 MWt	Nominal nower consumption	51 68 MW
Concreter output	0.000 WW	Operational canacity	3.1 - 0.8 IVI W
Net electrical output	901 MWe	Potor speed	1000 r n m
Own consumption	60 MWe	Rotor speed Rump weight	1000 1.p.iii.
Own consumption	09 M WE	r unp weight	approx. 150 t
		Containment system	
Reactor technical paramet	ers		
Reactor height	10.9 m	Height of cylindrical part	38 m
Pressure vessel inner diameter	4.5 m	Inner diameter of cylindrical part	45 m
Cylindrical part wall thickness	193 mm	Wall thickness	1.2 m
Thickness of pressure vessel clade	ling 7 – 18 mm	Thickness of stainless steel liner	8 mm
Reactor weight without coolant	approx. 800 t		
Pressure vessel weight	322 t	Turbine	
		Number of high-pressure sections	1
Reactor core		Number of low-pressure sections	3
Number of fuel assemblies	163	Rotor speed	3000 r n m
Number of fuel elements per asset	nbly 312	High-pressure section weight	206 t
Number of control rods	61	Low-pressure section weight	200 t 480 t
Height of active core	3.6 m	Low problare section weight	100 0
Core height	3.0 m	Concretor	
Fuel enrichment	max 5 % II 225	Dated apparent power	1111 MW
Core loading (UO_2)	02 t	Power factor	
Evel cycle	92 t	Output voltage	0.9 24 I-W
ruer cycle	iour years	Nominal frequency	24 KV 50 Hz
		Cooling media	hydrogen – water
Depater appling system		Weight	564 t
Number of cooling loops	Λ	weight	5041
Number of cooling loops	4		
inner diameter of main		Condenser	_
Cooling piping	850 mm	Number per turbine	3
Volume of coolant	227 3	Number of pipes	22 000
in primary circuit	337 m ²	per condenser	approx. 32 000
Primary circuit working pressure	15.7 MPa	Pipe length	12 m
Inlet coolant temperature	approx. 290° C	Pipe material	titanium
Outlet coolant temperature	approx. 320° C	~ .	
Coolant flow	84 800 m /hour	Cooling tower	
		Number per unit	2
Steam-generator		Height	154.8 m
Number per unit	4	Diameter in top of the tower	82.6 m
Steam quantity produced in		Foot diameter	130.7 m
one steam generator	1470 t/hour	Wall thickness	0.9 – 0.18 m
Outlet steam pressure	6.3 MPa	Number of askew columns	112
Outlet steam temperature	278.5° C	Water flow (one tower)	approx. 17.2 m ³ /s
Steam generator weight	approx. 416 t	Volume of evaporated steam	2

from one tower

max. $0.4 \text{ m}^{3}/\text{s}$

2.3 Design changes performed at Temelín NPP

ITEM	ITEM	REASON	COMMENT
No.			
1	I&C Systems replacement	1,3	Unit 1 and 2 I&C. The replacement does not concern common and auxiliary I&C systems
2	Nuclear fuel, control rods (lifetime)	1,3	New nuclear fuel brings significant nuclear safety improvement, radioactive wastes and
			operational costs reduction
3	Radiation monitoring system (RMS)	3,2	Original design of RMS did meet neither technical nor legislative requirements
4	Primary circuit diagnostic system (TMDS)	4,1	Original design of primary circuit diagnostic system was not completely solved
5	Sipping	2,3	Original (Russian) system did not meet new legislation and western standard requirements
6	Bitumination system	1	Requirement for radioactive wastes reduction defined by PRE-OSART mission
7	Refueling machine I&C system replacement	3	Replacement of the original GANZ system with the system supplied by the ANSALDO
			company
8	Installation of compact grid in the spent fuel pool	4	New compact grid enables significant increase of spent fuel pool capacity
9	Simulator	1,2	provision for the operational personnel training
10	Technical support center	1	Fulfillment of the recommendations accepted after the TMI emergency
11	Inverters, rectifiers (AEG)	3	Replacement of the original (Russian) electrical instrumentation ABP (ANN) of safety
	×		systems power supplies was initiated by the requirement for nuclear safety improvement
12	Penetrations (Škoda+ISTC Company)	3	Provision for safe hermetic penetration
13	Replacement of J2UX circuit breakers	3	Initiated by negative operating experience at Bohunice and Dukovany NPPs (fires, etc.)
14	Unit transformer penetrations (Passoni Villa bushings)	3	Replacement of original (Russian) penetrations because of negative operating experience
			at other Czech power plants
15	Addition of back-up power supply for reactor building No. 2	1	Requirement for separation of power supplies for each unit
16	Addition of a common back-up diesel generator station (DGS)	1,4	Addition of another back-up emergency power supply source for safety related systems
			for the reason of provision of this power supply type for important and costly equipment
17	Increase of accumulator batteries capacity	1	Replacement of original accumulator batteries because of negative operating experience
			and with the intent to increase their operational capacity in case of total station blackout
18	Implementation of "reserve electrical protections" and	4	Fully selective scheme providing for the elimination of failures in the electric part of the
	provision for full selectivity in 6 kV radial electrical networks		individual units (short-circuits, problems with grounding, etc.).
19	Pressuriser electrical heaters continuous control	1	The intent is to decrease ageing of primary circuit components
20	Installation of hydrogen recombination system	1	Elimination of hydrogen in the containment during accidents
21	Post-accident hydrogen monitoring system	1	Monitoring of hydrogen concentration during and after accident.
22	Replacement of selected valves	3	Replacement of unreliable valves
23	Reconstruction of stabile fire extinguishing system for outdoor	1	Inclusion of automatic activation; installation of additional barriers; installation of
	power transformers		additional nozzles
24	Introduction of secondary load follow regulation	4	Technical requirements of CEZ, a.s. defined in connection with the preparation of the
			operation with UCPTE

ITEM	ITEM	REASON	COMMENT
No.			
25	Construction of plant terminal (TELETE)	4	Technical requirements of ČEZ, a.s. defined in connection with the preparation of the operation with UCPTE
26	Modification of the TVD and TVN water systems	4	Initiated by results of new hydraulic calculations to assure full system functionality in all operating modes
27	Replacement of pumps	3	Liquidation of manufacturers, unsuitable characteristics
28	Modification of containment cesspool system	1	Modifications based on results of tests performed in Russia
29	Containment venting (single failure)	1	Sheathing of first closing valve and corresponding piping under the containment
30	Titanium condenser pipes installation	4	Increase of pipes lifetime with the transition to a more effective chemistry regime (by increasing pH)
31	Control rod drives replacement	3	Increase of the lifetime and reliability using innovated drives manufactured by ŠKODA
32	Introduction of new chemistry control	4	Increased quality of the chemical control enables to reach longer lifetime of important components, in particular the steam-generator
33	New safety analysis	1,2	Reworking of safety analyses in connection with the fuel and I&C replacement
34	ATWS analyses	1	Reworking of safety analysis in relation to latest findings in nuclear power engineering
35	PSA level 1 and 2 development project	1	level 1 – solves the probability of core damage level 2 – solves the probability of releases due to core damage
36	Severe accidents analysis	1	Studies of selected severe (beyond design basis) accidents
37	SW independent verification & validation project (IV&V)	2	Independent verification and validation of safety critical SW
38	Leak Before Break	1	Assessment of primary circuit integrity securing level (prevention against LOCA)
39	EOP development project	4,1	Symptom based emergency procedures development (prevention of accidents)
40	SAMG development project	1,4	Guidelines for liquidation of accidents (logically linked with EOP)- accident mitigation
41	Fire safety, cables, electronic fire detection system	2,4	Replacement of original cabling with fire-poof and fire non-propagating ones; installation of electronic fire detection system manufactured by CERBERUS.
42	Seismic analyses	1	Re-assessment of Temelín design against newly defined seismic loading - 0.1 g; calculation of response spectra for each floor, rep. building; seismic re-qualification
43	Completion of documentation	2	Project for amendment and completion of required documentation related to safety related equipment (strength, lifetime, seismicity).
44	ISE project	4,1	Installation of computer based information system
45	Modification of SG inner parts	4	Modification of the feeding node and SG separation (lifetime improvement)
46	Addition of new SG water level measurement	2	Project assure separations of safety divisions
47	I&C system for polar crane replacement	3	Replacement of the original ROBOTRON system with a new one, more reliable and enabling addition of functionality
48	Filtration system for emergency control room	1	Addition of filters in HVAC system will enable use of MCR even during accidents
49	Modification of main control room venting system	1	Assuring the main control room environment according to standards (temperature, noisiness, etc.)

ITEM	ітем	REASON	COMMENT
No.			
50	Installation of GERB absorbers	2	Fulfillment of seismic requirements
51	Addition of drench fire extinguishing system for main coolant pumps	2	Reaction to regulatory body requirements
52	Addition of radioactive waste treatment system for liquid wastes liquidation after accidents	1	Lowering of radioactive wastes volume
53	Addition of system for collection of boric water and system for separation	1	Lowering of radioactive wastes volume
54	Replacement of asbestos sealing	4,2	Replacement with Teflon provides for increased technological equipment lifetime
55	Installation of new heat-exchangers of active engineered safety systems	3	Low quality of original heat-exchangers
56	Addition of relief valve to pressuriser system	1	Prevention of false actions of pressuriser safety valves
57	Replacement of steam generator steam pipes quick-acting valves	3	Protection of important and costly components
58	Modernization of main coolant pumps	4,1	Provision for required coolant flow through the core, fixation of the impeller, rotor balancing
59	Organized depository of high activity wastes	2	Change of original radioactive waste depository concept
60	Replacement of freon in cooling systems	2	Reconstruction of cooling station with use of absorber units

Legend : Reason for design change:

1 - recommendation of individual missions and audits (IAEA, NUS Halliburton, TUV, etc.)

2 - requirement coming from regulatory body or/and from new legislation
3 - replacement of components because of low quality of original ones, loss of supplier, etc.

 $4 - \check{CEZ}$ own decision