Ident.	Name of the safety findings	Cat.	State	Implement.
G	GENERAL PROBLEMS			
G01	Equipment classification	II	3,4	2001
G02	Equipment qualification	III	3	2001
G03	Class 1 and 2 safety systems reliability analyses	II	4	Implemented
RC	CORE			
RC01	Prevention of uncontrolled H ₃ BO ₃ dilution	II	2	2002
CI	COMPONENTS INTEGRITY			
CI01	TNR brittle fracture and TNR condition checks	II	4	Implemented
CI02	Non-destructive checks	III	4	Implemented
CI03	Primary piping swing limiters	II	2	2005
CI04	SG primary collector integrity	II	4	Implemented
CI05	SG pipes integrity	II	4	Implemented
CI06	Feedwater inlet piping in the SG	Ι	4	Implemented
S	SYSTEMS			1
S01	Primary circuit protection against cold pressurizing	II	4	Implemented
S02	Measures for the SG primary collector break solution	II	4	Implemented
S03	Main coolant pump packing cooling system	II	3,4	2004
S04	Qualification of PVKO and OVKO for work with water	II	3,4	2002
	media		Í	
S05	SAOZ suction wells blocking risk	III	4	Implemented
S06	SAOZ suction line integrity	II	4	Implemented
S07	SAOZ shower exchanger integrity	II	4	Implemented
S08	RČA in the SAOZ discharge lines	Ι	4	Implemented
S09	Qualification of PVPG and PSA in the steam lines for	II	2	2005
	work with water media			
S10	PVPG operation on low-pressure steam lines	II	2	2005
S11	Control valves for the SG level control	Ι	4	Implemented
S12	Regulations for fast super-emergency feed water delivery	Ι	3	2004
S13	Feedwater piping vulnerability	III	4	Implemented
S14	Main control room ventilation system	II	2	2007
S15	Post-emergency hydrogen recombination system	II	4	Implemented
S16	Primary circuit de-aeration under emergency conditions	II	2,4	2002
S17	Important service water system	II	2	2003
I&C	I&C			
I&C01	I&C reliability	II	2,3	2009
I&C02	Safety systems design	Ι	2	2007
I&C03	Reactor trip initiation signals check	II	4	Implemented
I&C04	Control rooms design from the human factor viewpoint	II	2	2009
I&C05	Physical and functional separation between the main and	II	2	2007
	emergency control room			
I&C06	Enginery condition monitoring	Ι	2,4	2003
I&C07	Primary circuit diagnostic system	II	2,3	200463

Safety issues solution status for the NPPs with VVER-440/2130 in the Dukovany NPP

Ident.	Name of the safety findings	Cat.	State	Implement.
I&C08	Monitoring of releases from reactor cover	II	4	Implemented
I&C09	Equipment for emergency monitoring	Π	2	2009
I&C10	Technical support center	II	2	2004
I&C11	Chemical water regime check (PO and SO)	Ι	3,4	2002
EL	ELECTRIC POWER SUPPLY			
EL01	Emergency DG starting logic	Ι	4	Implemented
EL02	Diesel generators reliability	Ι	2,4	2002
EL03	DG protection signals	Ι	2	2004
EL04	Power supply system in case of emergency and emergency regulations	II	4	Implemented
EL05	Emergency accumulator batteries discharge time	II	4	Implemented
С	CONTAINMENT			
C01	Force stress of the pressure relief condenser (max. overpressure) under LOCA conditions	III	3	2002
C02	Thermodynamic behavior of the pressure relief condenser	Π	3	2002
C03	Value of releases from the hermetic zone	II	4	Implemented
C04	Maximum pressure difference across the walls of the hermetic boxes rooms	II	4	Implemented
C05	Pressure peak in the containment and occurrence of underpressure after the spraying	Ι	4	Implemented
IH	INTERNAL RISKS			
IH01	Fire risk systematic analyses	II	4	Implemented
IH01 IH02	Fire prevention	III	3,4	2003
IH02 IH03	Detection and fire-extinguishing systems	II	3,4	2003
IH04	Fire consequences mitigation	II	2,4	2007
IH05	Flood systematic analyses	I	3,4	2003
IH06	Flying objects initiated by the turbine	I	1,4	2006
IH07	Internal risk due to VT piping break	III	2	2003
IH08	Falling of heavy objects	Ι	4	Implemented
EH	EXTERNAL RISK			-
EH01	Seismic design	III	2	2005
EH02	Analyses of specific external natural conditions	Ι	4	Implemented
EH03	External events caused by man	II	4	Implemented
AA	EMERGENCY ANALYSES			
AA01	Scope and methodology of emergency analyses	II	3,4	2003
AA02	Securing the quality of NPP data used in the emergency analyses	Ι	4	Implemented
AA03	Validation of the calculation codes and NPP model	II	4	Implemented
AA04	Availability of the emergency analyses results for the NPP operation support	Ι	4	Implemented
AA05	Main steam lines break emergency analyses	Ι	4	Implemented
AA06	Transients leading to undercooling in relation to p-t shocks	II	3	2002

Ident.	Name of the safety findings	Cat.	State	Implement.
AA07	Primary SG collector break analyses	II	4	Implemented
AA08	Accident at low power and in the tripped state	II	4	Implemented
AA09	Severe accidents	Ι	3	2010
AA10	Probabilistic safety assessment	Ι	4	Implemented
AA11	Accident with boric acid dilution	Ι	4	Implemented
AA12	Accident with the drop of spent fuel assemblies	Ι	4	Implemented
AA13	ATWS	Ι	4	Implemented
AA14	Total blackout	Ι	4	Implemented
AA15	Total loss of residual heat removal	Ι	4	Implemented

Explanations:

- **State: 0** does not apply
 - 1 not yet decided
 - 2 project preparation
 - 3 project implementation
 - 3, 4 partially completed
 - 4 completed
- **Category:** I Deviation from recognized international procedures. It is suitable to include them as a part of activities for the solution of safety issues with higher priority.
 - **II** Safety relevant. Defense in depth is degraded. An intervention is required to solve the issue.
 - **III** Highly safety relevant. Defense in depth is insufficient. Immediate corrective interventions are necessary. Provisional measures may be also necessary.
 - IV The most relevant safety problem. Defense in depth is unacceptable. Immediate intervention is required. Compensation measures must be defined before the solution of the safety problem. Safety problem of this category was never identified in VVER 440/213.

Year 2000 – Fulfilled in total - EDU 39

IDENT. NAME OF THE SAFETY FINDINGS CATEG. IMPLEMENT. G GENERAL G1 Components classification Π F F G2 Equipment qualification Ш G3 Class 1 and 2 safety systems reliability analyses Π F RC CORE RC1 Prevention of uncontrolled boron dilution Π F RC2 Control rods insertion reliability /fuel assembly deformation Ш F RC3 Π F Sub-criticality monitoring during the reactor outage CI **COMPONENTS INTEGRITY** CI 1 F* TNR embrittlement and its monitoring Ш CI 2 F* Non-destructive checking III CI 3 Primary piping swing limiter Π F CI4 Steam generator collector integrity Ш F CL5 Π Steam generator pipes integrity F CI 6 Ш Steam and feed piping integrity F S **SYSTEMS S**1 Primary circuit protection against cold pre-pressurizing Π F S2 Steam generator primary collector break mitigation Π F S3 Main coolant pump packing system Π F S4 Π Qualification of pressurizer safety and relief valves for water F flow Emergency core cooling wells grids blocking Ш **S**5 F F **S6** Water reservoir and emergency cooling system intake piping Π integrity Π **S**7 Emergency cooling system exchanger integrity F **S**8 Power control of the valves in the emergency cooling system I F intake F* **S**9 Qualification of safety and relief valves for water flow III S10 Operation of steam generator safety valves at low pressure Π F S11 I F Steam generator valves for level control S12 Regulations for feed water emergency make-up I F **S13** Steam generator emergency feeding by cold water I F S14 Π Main control room ventilation system F S15 F Hydrogen recombination system Π I&C **INSTRUMENTATION AND CONTROL** I&C 1 Instrumentation and control system reliability Π F I&C 2 I Safety system start-up project F I&C 3 Automatic rector protection for power distribution and DNB Ι F I&C 4 Π F Min control room working engineering

Safety issues solution status for the NPPs with VVER-1000 in the Temelín NPP

I&C 5	Power distribution monitoring and control in the load follow mode	Π	F
I&C 6	Monitoring conditions for mechanical equipment	Ι	F
I&C 7	Primary circuit diagnostic system	II	F
I&C 8	Monitoring system of releases from reactor vessel cover	III	F
I&C 9	Emergency monitoring instrumentation	II	F
I&C 10	Technical support center	II	F
I&C 11	Chemical regime control and monitoring (primary and secondary circuits)	Ι	F
EL	ELECTRICAL SYSTEMS		
El 1	External power supply through start-up transformers	Ι	F
El 2	Diesel generators reliability	Ι	F
El 3	Diesel generators protection signals	Ι	F
El 4	Local power supply for failures and emergency control	II	F
El 5	Emergency batteries discharge time	III	F
El 6	DC circuits earthing failure	Ι	F
CONT	CONTAINMENT		
Cont 1	Containment by-pass	II	F
IH	INTERNAL RISK		
IH 1	Fire risk systematic analysis	II	F
IH 2	Fire prevention	III	F
IH 3	Fire annunciation detection	II	F
IH 4	Fire effects mitigation	II	F
IH 5	Flood systematic analysis	Ι	F
IH 6	Protection against emergency power distribution panels flooding	II	F
IH 7	Protection against dynamic effects of main steam and feeding piping break	Π	F*
IH 8	Polar crane blocking	II	F
EH	EXTERNAL QUALITY (? <i>MAY BE RATHER RISK</i>)		
EH 1	Seismic design	II	F
EH 2	Analysis of plant specific external effects	Ι	F
EH 3	External events caused by man	II	F
AA	EMERGENCY ANALYSES		
AA 1	Emergency analyses scope and methodology	II	F
AA 2	Securing the quality of NPP data used in the emergency analyses	Ι	F
AA 3	Calculation programs and plant model validation	Ι	F
AA 4	Availability of the emergency analyses results for the NPP operation support	Ι	F
AA 5	Main steam line break emergency analyses	Ι	F
AA 6	Transients leading to undercooling in relation to pressure- temperature shocks	Π	0
AA 7	Steam generator collector break analysis	II	F
AA 8	Accident at low power or outages	II	F
AA 9	Severe accidents	Ι	F

AA 10	Probabilistic safety evaluation	Ι	F*
AA 11	Accident with boron dilution	Ι	F
AA 12	Accidents caused by the drop of spent fuel container	Ι	F
AA 13	Expected transients without shut-down (ATWS)	II	F
AA 14	Total blackout	II	F
AA 15	Total loss of heat removal	II	F
OP	OPERATION		
OP 01	Regulations for normal operation		F
OP 02	Emergency operational regulations		F
OP 03	Normal operation technical specifications		F
Man 1	Need for safety culture improvement		O, (R)
Man 2	Feedback in operation		F, (R)
Man 3	Quality assurance program		F, (R)
Man 4	Data and documents control		F
PO 01	Regulations application philosophy		F
PO 02	Supervision schedule		O, (R)
PO 03	Communication system		F
RP 01	Radiation protection and monitoring		F, (R)
Tr 01	Training programs		F, (R)
EP 01	Emergency center		F

Legend: F - measure finished F* - additional evaluations carried out, or solution amendment

O - measure under progressR - recommended by the OSART mission 2001