Annex 1

of the

National Report of the Czech Republic

under the

Nuclear Safety Convention

Nuclear Power Plant Dukovany

1.1 Reactor Unit Scheme

NPP Dukovany reactor unit scheme is shown on Fig. 1-1. Following main components are marked out:

PRIMARY CIRCUIT

- 1. Reactor
- 2. Steam generator
- 3. Pressuriser
- 4. Spent-fuel storage pool
- 5. Refueling pit
- 6. Refueling machine
- 7. Main circulation pump
- 8. Bubbling tower
- 9. Air-conditioning system
- 10. Ventilation stack
- 11. Main crane

SECONDAY CIRCUIT

- 12. High-pressure turbine stage
- 13. Low-pressure turbine stage
- 14. Generator
- 15. Condenser
- 16. Separator-reheater
- 17. Regenerative heaters
- 18. Feedwater tank with degasifier
- 19. Steam piping into turbine
- 20. Cooling circulation circuit piping
- 21. Insulated cables for generator power outlet
- 22. High-voltage transformer 400 kV
- 23. House transformer 6 kV
- 24. Manipulation crane

Main parameters

Number of reactor unit Reactor Type Pr	4 ressurised water rector VVER 440/213	Diameter Length	3,21 m 11,80m
Unit parameters	V VLIC 440/213	Main circulation pump Number per unit	6
_	1375 MWt	•	1,6 MW
Nominal heat output Brutto electrical output	440 Mwe	Nominal power consumption Pump capacity c	ca 7100 m ³ /hour
Netto electrical output	388 Mwe	Rotor speed	1500 rounds/min
Self consumption	52 Mwe	Weight	cca 48 t
Sen consumption	J2 WIWC	Weight	cca 40 t
		Turbine	
Reactor parameters		Number of high-pressure sections	1
Reactor height	23,67 m	Number of high-pressure sections	2
Pressure vessel diameter	3,542 m	Nominal rotor speed	3000 rounds/min
Thickness of cylindrical part	340 mm	Inlet steam temperature	256 °C
Thickness of pressure vessel c	ladding 9 mm	Inlet steam pressure	4,3 Mpa
Pressure vessel weight	215.15 t	1	, 1
Reactor weight	395 t	Generator	
C		Rated power	220 MW
Reactor core		Output voltage	15,75 kV
Number of fuel assemblies	312	•	50 Hz
Number of fuel elements per a		Nominal frequency Cooling media	hydrogen - water
Number of control rods	37	Cooling media	nyurogen - water
Height of active core	2,5 m	Condonan	
=		Condenser	4
Diameter of active core	2,88 m	Number per turbine	1
Fuel enrichment	1,6/2,4/3,6 % U 235	Number of pipes	20.040
Core loading (UO ₂)	42 t	per condenser	cca 29 840 35 000 m ³ /hod
Fuel cycle	four years	Water flow	
		Pipe material	brass alloy
Reactor cooling system		Cooling towers	
Number of cooling loops	6	Number per unit	2
Inner diameter of main		Height	125 m
cooling piping	500 mm	Diameter in top of the tower	59,49 m
Volume of coolant	2	Foot diameter	87,94 m
in primary circuit	209 m^3	Wall thickness	0,6-0,15 m
Primary circuit working pressu		Volume of evaporated steam	2
Inlet coolant temperature	cca 267 °C	from one tower	max. $0.15 \text{ m}^{3}/\text{s}$
Outlet coolant temperature	cca 297°C	Water flow (one tower)	$cca 10,55 \text{ m}^3/\text{s}$
Coolant flow	42 000 m ³ /hour		
Steam-generator			
Number per unit	6		
Weight	cca 165 t		
Steam output	450 t/hour		
Outlet steam pressure	4,61 MPa		
Outlet steam temperature	260,0 ° C		
Sallet Steam temperature	200,0 C		

1.3 Modernization projects already performed at NPP Dukovany

A) Projects in framework of "Back-fitting of NPP Dukovany"

- 1. Main coolant pump control algorithms modification
- 2. Steam generator level measurement upgrade
- 3. Hydrogen recombination system installation within hermetic compartment
- 4. High-pressure compressors replacement
- 5. Addition of redundant back-up to the first category power supplies No. 4 system
- 6. Teledosimetric system installation
- 7. Grab tank on Skryje stream installation
- 8. Cooling system installation for the machine hall roof steel structure
- 9. Stationary fire extinguishing equipment installation for central oil system
- 10. Unit electrical fire detection system upgrade
- 11. Stationary halon fire extinguishing system installation for unit electrical equipment

B) Projects in framework of "Modernization of NPP Dukovany"

- 1. Installation of electrical fire detection system at water pump station "Jihlava"
- 2. Modernization of system for public warning during accidents
- 3. Construction of interim spent fuel storage facility
- 4. 0,4 kV switchgears upgrade
- 5. 32/16/16 MVA transformer back-up installation
- 6. Data transfer upgrade for Teledosimetric system
- 7. Fire-proof spraying of important electrical cables
- 8. Optimalisation of Automated Physical Protection System AKOBOJE
- 9. Water treatment station modernization
- 10. Water and Oil cooling system replacement for dieselgenerator I station
- 11. Condensate treatment system modernization
- 12. Dieselgenerators electrical system replacement
- 13. Construction of new telephone switchboard
- 14. Water and Oil cooling system replacement for dieselgenerator II station
- 15. TG pumps replacement
- 16. First category power supplies system No. 4 batteries replacement
- 17. Control room dieselgerator announciation upgrade
- 18. SO continuous measurement system installation

Nuclear power plant Temelín

2.1 Reactor Unit Scheme

NPP Temelín reactor unit scheme is shown on Fig. 2-1. Following main components are marked out:

- 1. Reactor
- 2. Primary circuit piping
- 3. Main coolant pump
- 4. Pressuriser
- 5. Steam generator
- 6. Polar Crane
- 7. Spent-fuel pool
- 8. Refueling machine
- 9. Hydro-acummulators
- 10. Containment
- 11. Ventilation stack
- 12. Emergency cooling system
- 13. Dieselgenerator station
- 14. Machine hall
- 15. Feed-water tank
- 16. Main steam piping
- 17. High-pressure turbine stage
- 18. Low-pressure turbine stage
- 19. Generator
- 20. Exciter
- 21. Separator
- 22. Condenser
- 23. Heat exchanger
- 24. Coolant inlet and outlet
- 25. Pumping station
- 26. Cooling water pump
- 27. Cooling tower
- 28. Generator power output
- 29. Transformer
- 30. Power output
- 31. Destilate reservoir

Main parameters

wan parameter	,		
Number of units	2	Diameter	4,2 m
Reactor Type	PWR	Length	14,5 m
-34.	VVER 1000-320	8	- 1,5
		Main circulation pump	
Unit parameters		Number per unit	4
Nominal thermal output	3000 MWt	Nominal power consumption	5,1 – 6,8 MW
Brutto electrical output	981 Mwe		cca 21 200 m ³ /hod
Netto electrical output	912 Mwe	Rotor speed	1000 rounds/min
Self consumption	69 Mwe	Weight	cca 156 t
-		-	
		Containment system	
Reactor parameters		•	
Height	10,9 m	Height of cylindrical part	38 m
Inner diameter	4,5 m	Inner diameter of cylindrical part	
Thickness of cylindrical part	193 mm	Thickness of wall	1,2 m
Thickness of pressure vessel clad	lding 7 – 18 mm	Thickness of steel cladding	8 mm
Reactor weight	cca 800 t		
Pressure vessel weight	322 t	Turbine	
		Number per unit	1
Reactor core		Number of high-pressure section	3
Number of fuel assemblies	163	Rotor speed	3000 rounds/min
Number of fuel elements per asse	embly 312	Weight of high-pressure section	206 t
Number of control rods	61	Weight of low-pressure section	480 t
Height of active core	3,6 m		
Diameter of active core	3,1 m	Generator	
Fuel enrichment	max. 5 % U 235	Rated power	1000 MW
Core loading (UO ₂)	92 t	Efficiency	0,9
Fuel cycle	four years	Output voltage	24 kV
		Nominal frequency	50 Hz
_		Cooling media	hydrogen - water
Reactor cooling system		Weight	564 t
Number of cooling loops	4		
Inner diameter of main		Condenser	
Cooling piping	850 mm	Number per turbine	3
Volume of coolant	3	Number of pipes	
in primary circuit	337 m^3	per condenser	cca 32 000
Primary circuit working pressure		Pipe length	12 m
Inlet coolant temperature	cca 290° C	Pipe material	titan
Outlet coolant temperature Coolant flow	cca 320° C 84 800 m ³ /hour	G . P . A.	
Coolant now	64 600 III /II0uI	Cooling tower	2
G.		Number per unit	2
Steam-generator		Height	154,8 m
Number per unit	4	Diameter in top of the tower	82,6 m
Weight	416 t	Foot diameter	130,7 m
Steam output	1470 t/hour	Wall thickness	0.9 - 0.18 m
Outlet steam pressure Outlet steam temperature	6,3 Mpa 278,5° C	Volume of evaporated steam from one tower	max. $0.4 \text{ m}^{3}/\text{s}$
outiet steam temperature	270,5 C	Water flow (one tower)	cca 17,2 m ³ /s
		ator now (one tower)	CCu 17,2 III /3

2.3 Design changes performed at Temelín NPP

	ign changes performed at Temelin NPP ITEM	REASON	COMMENT
No.			
1	I&C Systems replacement	1,3	With exception of some auxiliary systems
2	Nuclear fuel, control rods (lifetime)	1,3	New nuclear fuel brings significant improvement with respect to nuclear safety,
			economy and minimization of generated radioactive wastes
3	Radiation monitoring system (RMS)	3,2	Original design of RMS did not fulfil all technical and legislative requirements
4	Primary circuit diagnostic system (TMDS)	4,1	Original design of primary circuit diagnostic system was not completely solved
5	Sipping	2,3	Original (Russian) system did not fulfil all technical and legislative requirements
6	Bitumination system	1	Requirement for minimization of radioactive wastes defined by OSART mission
7	Refueling machine I&C system replacement	3	Replacement of original system by company GANZ for system supplied by company ANSALDO
8	Installation of compact grid in the spent fuel pool	4	New compact grid enables significant increase of spent fuel pool capacity
9	Simulator	1,2	Enables operators training in accordance with requirements
10	Technical support center	1	Post TMI recommendation
11	Electrical equipment replacement (Alterners, rectifiers, etc.)	3	Replacement of original (Russian) electrical equipment ABP (ANN) of safety systems
			power supplies was initiated to increase its reliability (nuclear safety)
12	Bushing replacement (Škoda+ISTC Company)	3	Installation of new qualified, reliable bushings
13	Replacement of circuit breakers J2UX	3	Initiated by negative operating experience at Bohunice and Dukovany NPP's
14	Replacement of unit transformer bushings (Passoni Villa bushings)	3	Replacement of original (Russian) bushings because of negative operating experience at other Czech power plants
15	Addition of back-up power supply for reactor building No. 2	1	Requirement for separation of power supplies for each unit
16	Addition of back-up dieselgenerator station (DGS) common for both units	1,4	Addition of another back-up emergency power supply source for safety related systems
17	Increase of acubatteries capacity	1	Replacement of original acubatteries because of negative operating experience and with the intent to increase their operational capacity in case of total station blackout
18	Installation of "reserve electrical protections" and introduction of full selectivity in radial electrical networks of 6 kV	4	Protection against short-circuits, problems with grounding, etc.
19	Continuous controls of pressuriser electrical heaters installation	1	The intent is to decrease ageing of primary circuit components
20	Installation of hydrogen recombination system	1	Elimination of hydrogen in containment during accidents
21	Post-accident hydrogen monitoring system	1	Monitoring of hydrogen concentration during and after accident.
22	Replacement of selected valves	3	Replacement of unreliable valves
23	Reconstruction of stabile fire extinguishing system for outdoor power transformers	1	Inclusion of automatic activation; installation of additional barriers; installation of additional nozzles

Page 9 of 12 Annex 1 č.j.6287/2.3/98

ITEM No.	ITEM	REASON	COMMENT
24	Tutura di anti anti anti anti anti anti anti ant	1	Litiet d but a bailed a suite and a suite for a such a ship in LICETE
25	Introduction of secondary load follow regulation Construction of plant terminal	4	Initiated by technical requirements coming from membership in UCPTE Initiated by technical requirements coming from membership in UCPTE
26	Modification of water treatment systems TVD and TVN	4	Initiated by results of new hydraulic calculations to assure full system functionality in
	-	4	all operating modes
27	Replacement of selected pumps	3	Initiated partly by technical unsuitability of some original equipment and partly by unavailability of original suppliers
28	Modification of containment cesspool system	1	Modifications based on results of tests performed in Russia
29	Containment venting (single failure)	1	Sheathing of first closing valve and corresponding piping under containment
30	Titan condenser pipes installation	4	Increase of pipes design life together with possibility to change to more effective chemistry regime (by increasing pH)
31	Control rod drives replacement	3	Increase of drives design life and reliability by replacing original ones to drives manufactured by ŠKODA
32	Introduction of new chemistry control	4	Initiated to increase life time of important equipment (before others steamgenerator)
33	New safety analysis	1,2	Reworking of safety analysis because of new fuel and I&C system
34	ATWS analyses	1	Reworking of safety analysis with use of up-to-date experience and knowledge
35	PSA level -1 and 2 development project	1	level – analysis of the probability of accident with core melting level – analysis of the probability of accident with loose of containment integrity
36	Severe accidents analysis	1	Studies of selected severe (beyond design basis) accidents
37	SW independent verification & validation project (IV&V)	2	Independent verification and validation of safety critical SW
38	Leak Before Break	1	Assessment of primary circuit integrity (prevention against LOCA)
39	EOP development project	4,1	Symptom based emergency procedures development (prevention of accidents)
40	SAMG development project	1,4	Guidelines for liquidation of accidents (logically linked with EOP)- accident mitigation
41	Fire safety, cables, electronic fire detection system	2,4	Replacement of original cabling for fire-poof and fire non-propagating ones; installation of electronic fire detection system manufactured by CERBERUS.
42	Seismic analyses	1	Re-assessment of Temelín design against newly defined seismic loading - 0.1 g; calculation of response spectra for each floor, rep. building; seismic re-qualification
43	Completion of documentation	2	Project for amendment and completion of required documentation related to safety related items, resp. structures
44	ISE project	4,1	Installation of computer based information system
45	Modification of SG inner parts	4	Intent is to increase service life
46	Addition of new SG water level measurement	2	Project assure separations of safety divisions

Page 10 of 12 Annex 1 č.j.6287/2.3/98

ITEM No.	ITEM	REASON	COMMENT
47	I&C system for polar crane replacement	3	Replacement of original ROBOTRON system for more reliable one enabling addition of functionality
48	Filtration system for emergency control room	1	Installation of additional filters in ventilation system will enable use of the emergency control room during accidents
49	Modification of main control room venting system	1	Intent is to assure the main control room environment according to standards (temperature, noisiness, ect.)
50	Installation of absorbers GERB	2	Installation of absorbers according to asseismic requirements
51	Addition of drench fire extinguishing system for main coolant pumps	2	Reaction to regulatory body requirements
52	Addition of radioactive waste treatment system for liquid wastes liquidation after accidents	1	Lowering of radioactive wastes volume
53	Addition of system for collection of boric water and system for separation	1	Lowering of radioactive wastes volume
54	Replacement of asbestos sealing	4,2	Replacement with teflon one to increase service life
55	Installation of new heat-exchangers of active engineered safety systems	3	Because of low quality of original heat-exchangers
56	Addition of relief valve to pressuriser system	1	Prevention of false actions of pressuriser safety valves
57	Replacement of steamgenerator steam pipes quick-acting valves	3	Protection of important components
58	Modernization of main circulation pumps	4,1	Required coolant flow through active core
59	Organized depository of high level wastes	2	Change of original radioactive waste depository concept
60	Replacement of freon in cooling systems	2	Reconstruction of cooling station with use of absorber units

Legend: Reason for design change:

- 1 recommendation of individual missions and audits (MAAE, NUS Halliburton, TUV, etc.)
- 2 requirement coming from regulatory body or/and from new legislation
- 3 replacement of components because of low quality of original ones, loss of supplier, ect.
- 4 operators own decision

Page 12 of 12 Annex 1 č.j.6287/2.3/98